Researchers Create 'Invisibility Cloak' For Colloidal Nanoparticles

Mar 06, 2008

Carnegie Mellon University’s Michael Bockstaller and Krzysztof Matyjaszewski have created a version of Harry Potter’s famed “invisibility cloak” for nanoparticles.

Through a collaborative effort, researchers from the departments of Materials Science and Engineering and Chemistry have developed a new design paradigm that makes particles invisible.

In a recent edition of Advanced Materials Magazine, the researchers demonstrate that controlling the structure of nanoparticles can “shrink” their visible size by a factor of thousands without affecting a particle’s actual physical dimension.

“What we are doing is creating a novel technique to control the architecture of nanoparticles that will remedy many of the problems associated with the application of nanomaterials that are so essential to business sectors such as the aerospace and cosmetics industry,” said Bockstaller, an assistant professor of materials science and engineering.

Colloidal particles are omnipresent as additives in current material technologies in order to enhance strength and wear resistance and other attributes. Light scattering that is associated with the presence of particles often results in an undesirable whitish, or milky, appearance of nanoparticles, which presents a tremendous challenge to current material technologies. Carnegie Mellon researchers have successfully created a way to prevent this problem by grafting polymers onto the particles’ surface.

“Essentially, what we learned how to do was to control the density, composition and size of polymers attached to inorganic materials which in turn improves the optical transparency of polymer composites. In a sense, light can flow freely through the particle by putting ‘grease’ onto its surface,” said Matyjaszewski, the J.C. Warner University Professor of Natural Sciences in the Department of Chemistry.

The new “particle invisibility cloak” will help create a vast array of new material technologies that combine unknown property combinations such as strength and durability with optical transparency.

Source: Carnegie Mellon University

Explore further: Atom-thick CCD could capture images: Scientists develop two-dimensional, light-sensitive material

add to favorites email to friend print save as pdf

Related Stories

How electrons split: New evidence of exotic behaviors

Dec 15, 2014

Electrons may be seen as small magnets that also carry a negative electrical charge. On a fundamental level, these two properties are indivisible. However, in certain materials where the electrons are constrained in a quasi ...

How was the Earth formed?

Dec 10, 2014

Just how did the Earth—our home and the place where life as we know it evolved—come to be created in the first place? In some fiery furnace atop a great mountain? On some divine forge with the hammer ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.