The Last Confessions of a Dying Star

Mar 04, 2008
Planetary Nebula NGC 2371
Planetary Nebula NGC 2371. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Probing a glowing bubble of gas and dust encircling a dying star, NASA's Hubble Space Telescope reveals a wealth of previously unseen structures.

The object, called NGC 2371, is a planetary nebula, the glowing remains of a Sun-like star. The remnant star visible at the center of NGC 2371 is the super-hot core of the former red giant, now stripped of its outer layers. Its surface temperature is a scorching 240,000 degrees Fahrenheit. NGC 2371 lies about 4,300 light-years away in the constellation Gemini.

The Hubble image reveals several remarkable features, most notably the prominent pink clouds lying on opposite sides of the central star. This color indicates that they are relatively cool and dense, compared to the rest of the gas in the nebula.

Also striking are the numerous, very small pink dots, marking relatively dense and small knots of gas, which also lie on diametrically opposite sides of the star. These features appear to represent the ejection of gas from the star along a specific direction. The jet's direction has changed with time over the past few thousand years. The reason for this behavior is not well understood, but might be related to the possible presence of a second star orbiting the visible central star.

A planetary nebula is an expanding cloud of gas ejected from a star that is nearing the end of its life. The nebula glows because of ultraviolet radiation from the hot remnant star at its center. In only a few thousand years the nebula will dissipate into space. The central star will then gradually cool down, eventually becoming a white dwarf, the final stage of evolution for nearly all stars.

The Hubble picture of NGC 2371 is a false-color image, prepared from exposures taken through filters that detect light from sulfur and nitrogen (red), hydrogen (green), and oxygen (blue). These images were taken with Hubble's Wide Field Planetary Camera 2 in November 2007, as part of the Hubble Heritage program.

Source: Hubble Center

Explore further: An old-looking galaxy in a young universe

add to favorites email to friend print save as pdf

Related Stories

Demonstration of "CrystEna" energy storage system

9 minutes ago

Hitachi America, Ltd., a wholly owned subsidiary of Hitachi, Ltd. and Demansys Energy, Inc. ("Demansys"), a smart grid technology company with offices in Connecticut and Troy, New York, announced today that ...

Astrophysicist explores star formation in Orion's belt

10 minutes ago

U.S. Naval Research Laboratory (NRL) astrophysicist Dr. T.L. Wilson is part of a multi-national research team that has discovered an outburst in the infrared from a deeply embedded protostar. The Herschel ...

Recommended for you

An old-looking galaxy in a young universe

19 hours ago

A team of astronomers, led by Darach Watson, from the University of Copenhagen used the Very Large Telescope's X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe ...

Giant methane storms on Uranus

21 hours ago

Most of the times we have looked at Uranus, it has seemed to be a relatively calm place. Well, yes its atmosphere is the coldest place in the solar system. But, when we picture the seventh planet in our ...

Where do stars form in merging galaxies?

23 hours ago

Collisions between galaxies, and even less dramatic gravitational encounters between them, are recognized as triggering star formation. Observations of luminous galaxies, powered by starbursts, are consistent ...

Could the Milky Way become a quasar?

Feb 27, 2015

A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.