Student Develops First Polarized LED

Mar 03, 2008
Student Develops First Polarized LED

In recent years, light emitting diodes (LEDs) have begun to change the way we see the world. Now, a Rensselaer Polytechnic Institute student has developed a new type of LED that could allow for their widespread use as light sources for liquid crystal displays (LCDs) on everything from televisions and computers to cell phones and cameras.

Martin Schubert, a doctoral student in electrical, computer, and systems engineering, has developed the first polarized LED, an innovation that could vastly improve LCD screens, conserve energy, and usher in the next generation of ultra-efficient LEDs. Schubert’s innovation has earned him the $30,000 Lemelson-Rensselaer Student Prize.

Schubert’s polarized LED advances current LED technology in its ability to better control the direction and polarization of the light being emitted. With better control over the light, less energy is wasted producing scattered light, allowing more light to reach its desired location. This makes the polarized LED perfectly suited as a backlighting unit for any kind of LCD, according to Schubert. Its focused light will produce images on the display that are more colorful, vibrant, and lifelike, with no motion artifacts.

Schubert first discovered that traditional LEDs actually produce polarized light, but existing LEDs did not capitalize on the light’s polarization. Armed with this information, he devised an optics setup around the LED chip to enhance the polarization, creating the first polarized LED.

The invention could advance the effort to combine the power and environmental soundness of LEDs with the beauty and clarity of LCDs. Schubert expects that his polarized LED could quickly become commonplace in televisions and monitors around the world, replacing widely used fluorescent lights that are less efficient and laden with mercury. His innovation also could be used for street lighting, high-contrast imaging, sensing, and free-space optics, he said.

Source: Rensselaer Polytechnic Institute

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

add to favorites email to friend print save as pdf

Related Stories

Molecular shuttle speeds up hydrogen production

Aug 14, 2014

An LMU team affiliated with the Nanosystems Initiative Munich (NIM) has achieved a breakthrough in light-driven generation of hydrogen with semiconductor nanocrystals by using a novel molecular shuttle to ...

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

COCO
4.3 / 5 (3) Mar 04, 2008
WELL done Martin!!
Nikola
5 / 5 (4) Mar 04, 2008
LEDs are the future lighting of all types of applications. It seems that there is almost nothing they cannot be engineered to do. CFLs will be a passing fad. I think it's safe to say that Martin Schubert will earn his PhD.
superhuman
5 / 5 (1) Mar 05, 2008
Yeah good work, but some more info about that optic setup of his would be nice.

>His innovation also could be used for street lighting, high-contrast imaging, sensing, and free-space optics, he said.
Why on earth would street lighting need polarized leds?
andy_o
5 / 5 (2) Jun 27, 2008
If street lights are polarized, it would reduce the glare to the driver's eyes, if properly set up. This would reduce the halos and stars that many people see when driving at night, even without using polarized sunglasses, or polarized glass for your windshield.