From opals to optical chips

Mar 03, 2008
From opals to optical chips

Materials known as photonic crystals could form the building blocks of future optical computers and micro-scale communications devices. Scientists have developed a low-cost and versatile way to make photonic crystals, and combined them in ways that bring optical ‘transistors’ a step closer.

European research on materials known as photonic crystals has made important progress in the race to build all-optical chips for computers and communications systems. The scientists developed a relatively inexpensive way to make high-quality photonic crystals, and showed how these can be integrated into conventional silicon chips.

Photonic crystals are materials whose optical properties vary in a regular, repeating way on a scale of a few hundred nanometres. An ideal photonic crystal can be designed to transmit light of one particular wavelength, and to block all other wavelengths. This gives photonic crystals some very useful properties.

The simplest material of this kind has a layered structure, like a film of oil on water. ‘One-dimensional’ structures like this are used as mirrors, non-reflective coatings, and paints whose colours change with the viewing angle. The gemstone opal, with its shimmering colour, is a natural photonic crystal.

The PHAT project worked with more complex structures whose optical properties vary in two and three dimensions (2D and 3D). Two-dimensional photonic crystals can act as waveguides, channelling light to where it is needed, and as filters to separate different wavelengths – a valuable property in optical communications. Three-dimensional photonic crystals can even trap light within their structures, potentially allowing them to act as optical switches.

Shrinking silicon

As electronic devices shrink and operating speeds increase, silicon chips are running out of room. Photons – light particles – are an obvious replacement for electrons, because they can carry more information in the same space.

Communications technology has been revolutionised by electro-optical devices based on the semiconductors gallium arsenide (GaAs) and indium phosphide (InP), optical fibres, and even all-optical amplifiers. But as PHAT spokesperson Gudrun Kocher points out, these devices tend to be much larger than the components needed to make computer chips. GaAs and InP are also expensive materials, and integrating them with silicon brings extra complexities. As a result, she says, most researchers agree that it will be 10-15 years before we see all-optical chips based on conventional (silicon) technology.

This is where photonic crystals come in. A combination of 3D photonic crystal optical switches and 2D waveguides could yield devices that are 10 or even 100 times smaller than those made at the moment. These could be used to assemble all-optical chips made entirely from silicon.

Mix and pour

Since the late 1980s researchers have developed several ways to make 2D and 3D photonic crystals. Many of these are based on expensive techniques developed from those used in the electronics industry, but the EU-funded PHAT, which stands for ‘Photonic Hybrid Architectures based on Two- and Three-Dimensional Silicon Photonic Crystals’, concentrated on a simpler self-assembly process.

Beads of plastic (PMMA) or silica, 250-900 nm in diameter, are first mixed with water to form a colloidal suspension. Then a solid surface is drawn slowly out of the water, and the beads stick to it in a regular lattice structure. The PHAT team assembled their ‘artificial opals’ by allowing capillary forces to draw the beads along microscopic channels cut in sheets of silicon or silica. In a single dip, they were able to form layers up to 10 mm long and more than 10 beads deep – the minimum practical thickness for a 3D photonic crystal.

The resulting structure of beads separated by air is known as a ‘direct opal’. The resulting refractive index is too low for many applications, so a subcontractor in St. Petersburg used chemical vapour deposition (CVD) to fill the empty spaces with silicon, after which the beads themselves are removed, leaving holes.

A further task was to use electron beam lithography to create a defect layer in the 3D crystals. “That’s because if the crystal is perfect, there’s no way to get light into or out of it,” Kocher explains. Finally, the plan is to sandwich two 3D crystals around a 2D crystal to act as a waveguide.

PHAT was coordinated at the Tyndall National Institute in Cork, Ireland, and had four other partners: the French Atomic Energy Commission (CEA) and University of Montpellier II, Mainz University, Germany, and the Technical Research Centre of Finland (VTT). “This was an ambitious project, and we didn’t manage everything that we set out to do,” says Kocher.

But by the time the project ended, in February 2007, it had two really big achievements under its belt. “We had developed a spatially-selective method of growing photonic crystals, and we had managed to integrate 3D photonic crystals with waveguides, which was a first,” says Kocher.

The crystal fabrication method was patented by two of the project partners, Tyndall and VTT. “This was a significant advance in photonic crystals, and it brings us a step closer to a practical optical computer, ” concludes Kocher.

Source: ICT Results

Explore further: Modification of structural composite materials to create tailored lenses

add to favorites email to friend print save as pdf

Related Stories

New 'switch' could power quantum computing

Apr 09, 2014

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles—one that could help ...

Unavoidable disorder used to build nanolaser

Mar 23, 2014

Researchers the world round are working to develop optical chips, where light can be controlled with nanostructures. These could be used for future circuits based on light (photons) instead of electron - ...

A layered nanostructure held together by DNA

Mar 20, 2014

(Phys.org) —Dreaming up nanostructures that have desirable optical, electronic, or magnetic properties is one thing. Figuring out how to make them is another. A new strategy uses the binding properties ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...