From 2-D pictures to 3 dimensions

Mar 03, 2008
From 2-D pictures to 3 dimensions
Your pictures of the Grand Canyon, Times Square or other destinations may be pretty good, but wouldn't it be nice to show them off in three dimensions? An award-winning 3-D reconstruction algorithm designed by a team of computer science researchers from UC-San Diego brings this dream within the grasp of reality. Credit: Manmohan Chandraker / UC San Diego

Your pictures of the Grand Canyon, Times Square or other destinations may be pretty good, but wouldn’t it be nice to show them off in three dimensions?

An award-winning 3D reconstruction algorithm designed by a team of computer science researchers from UC San Diego brings this dream within the grasp of reality.

This research gets at the heart of “autocalibration,” a well-studied, fundamental problem in computer vision. Autocalibration aims to recover the three dimensional structure of a scene using only its images, acquired from cameras whose internal settings and spatial orientations are unknown.

Autocalibraton is part of a larger 3D image reconstruction challenge that has caught the attention of Google, Microsoft and others.

Manmohan Chandraker, a fifth-year PhD student in the Department of Computer Science and Engineering at UCSD’s Jacobs School of Engineering led the work. He, Sameer Agarwal – a computer science UCSD alumnus now at the University of Washington, and their respective Ph.D. advisors, David Kriegman and Serge Belongie presented their research at the International Conference on Computer Vision (ICCV), held in Rio de Janeiro, Brazil in October 2007. ICCV is the premier conference in the field of computer vision. For this work, Chandraker took home one of three honorable mentions for ICCV’s prestigious David Marr prize.

This technology could be put to use in a wide variety of applications. For example, someone selling shoes online could take pictures of their shoes and create 3D reconstructions of their inventory. Such reconstructions would provide more information about what the shoes actually look like than images or video footage can.

The algorithm could also be used to automatically align security camera networks used in casinos and airports. Coupled with existing technology for immersive media, the algorithm could be used to create augmented-reality walkthroughs of cities, supermarkets or any other places of interest.

In the ICCV paper, the UCSD computer scientists propose the first practically scalable algorithm for 3D reconstruction which provides “a theoretical certificate of optimality.” In other words, the technique computes the best possible 3D reconstruction obtainable from the input data and does not slow down drastically for a large number of photographs.

“Our algorithm is guaranteed to provide the best 3D reconstruction,” said Chandraker. “It is very much a practical algorithm. In fact, the significance of the paper lies in our approaches for designing a theoretically correct algorithm that also works well in practice. Our approach utilizes modern convex optimization techniques to globally minimize the involved cost functions in a branch and bound framework,” explained Chandraker.

The paper, titled “Globally Optimal Affine and Metric Upgrades in Stratified Autocalibration” is available at vision.ucsd.edu/kriegman-grp/papers/iccv07a.pdf . MATLAB prototype code for the implementation will be available online when it is ready.

Source: University of California - San Diego

Explore further: Researchers use Twitter to predict crime

add to favorites email to friend print save as pdf

Related Stories

A new mathematics for experimental science

Apr 01, 2014

Mathematics is the ultimate scientific tool. For centuries it has been used to describe the forces of nature, from planetary motion to fluid dynamics. It helped unlock the secrets of DNA and unleashed the ...

Rapid materials testing in 3D

Mar 21, 2014

Ultrasound is a proven technology in components testing, but until now eva- luating the data has always been quite a time-consuming process. At the Hannover Messe from April 7-11, Fraunhofer researchers will ...

Crowdsourcing for creating 3D videos

Mar 14, 2014

Advanced graphics processors, new algorithms and advanced mathematics will soon make a new 3D video technology gathering feed from multiple sources possible.

3-D X-ray films show internal movement dynamics

Mar 13, 2014

How does the hip joint of a crawling weevil move? A technique to record 3D X-ray films showing the internal movement dynamics in a spatially precise manner and, at the same time, in the temporal dimension ...

Recommended for you

User comments : 0

More news stories

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.