Amazing minaturized 'SIDECAR' drives Webb telescope's signal

Feb 20, 2008
Amazing minaturized 'SIDECAR' drives Webb telescope's signal
The SIDECAR ASIC is a small, half-dollar-sized microprocessor developed for use on the JWST. Also show is the SIDECAR ASIC in spaceflight package. Credit: Teledyne Imaging Systems

Many technologies have become so advanced that they've been miniaturized to take up less space and weigh less. That's what happened to detector controls and data conversion electronics on the James Webb Space Telescope being built by Northrop Grumman.

The electronics will convert analog signals to digital signals and provide better images to Earth.

These components, called a "SIDECAR" have been miniaturized from a volume of about one cubic meter (35.3 cubic feet) to a small integrated circuit.

SIDECAR ASIC means "System for Image Digitization, Enhancement, Control And Retrieval Application Specific Integrated Circuit." This tiny advanced low-noise, low-power microprocessor-based control chip was designed by Teledyne Imaging Sensors, Thousand Oaks, Calif. to convert the analog signals (which is what television stations currently broadcast) into digital signals (which television stations will broadcast starting Feb. 2009). Like televisions, the Webb telescope is getting several of those converter boxes." Digital signals can be easily transmitted and stored.

There are also several benefits to the extreme miniaturization of the SIDECAR. Further, it's about the size of a half-dollar and can do the same job as an electronics box weighing 20 pounds. It's smaller weight also makes it easier to launch.

"In addition, a smaller SIDECAR enables the ASIC to be physically close to the detector it is controlling. This close proximity minimizes the distance the analog signal travels, thus reducing the noise of the system," said Matt Greenhouse, Integrated Science Instrument Module Scientist at NASA Goddard Space Flight Center, Greenbelt, Md.

The three instruments that will use the SIDECAR on the Webb telescope are the Near Infrared Camera (NIRCam), Near Infrared Spectrograph (NIRSpec), and the Fine Guidance Sensors (FGS). These instruments all use highly sensitive infrared detectors to study distant stars, planets, and galaxies. SIDECAR will sit next to each of these detectors like a sidecar on a motorcycle, and the microprocessor will control these infrared detectors.

SIDECAR will convert the analog signals from the infrared detectors into digital data which is much more robust and easier to transmit. Without the SIDECAR, the analog signals might be corrupted in transmission and the science images would be lost or damaged.

"The significant technical advancement in the SIDECAR is its very low noise - the analog to digital conversion is nearly perfect, adding no significant noise to the image; and its very low power - the SIDECAR consumes only 11milliwatts of power," said Markus Loose, lead designer of the SIDECAR at Teledyne. Low consumption of power is important for keeping the telescope's science instruments cold (37° Kelvin or minus 400° Fahrenheit) as they collect faint signals from objects near the edge of the universe.

It's important to make sure SIDECAR is fully functional before it goes into the Webb telescope, so it's already being used to improve astronomy on the ground.

Astronomers are "test-driving" four SIDECARs that were installed in early 2007 in the University of Hawaii's 2.2 meter telescope on Mauna Kea. Since then they have been collecting science data and giving scientists experience in operating the SIDECAR so that its performance is optimal by the time that the Webb telescope flies.

The concept for the SIDECAR was proposed in June 2000 through a program for Webb telescope technology development by the University of Hawaii and Teledyne Imaging Sensors, formerly the Rockwell Science Center. After seven years, the SIDECAR passed an important milestone in 2007 when an independent review team concluded that the technology had been shown to be ready for use on the Webb telescope. That test confirmed that SIDECAR could handle the radiation, vacuum, and the cold of the space environment.

As a result of SIDECAR's success in the review and in ground-based telescopes other missions are planning to use it, and there's a plan to install it in the Hubble Space Telescope in 2008.

Source: NASA's Goddard Space Flight Center

Explore further: Titan offers clues to atmospheres of hazy planets

add to favorites email to friend print save as pdf

Related Stories

Comet Jacques makes a 'questionable' appearance

25 minutes ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Australia approves huge India-backed mine

28 minutes ago

Australia has given the go-ahead to a massive coal mine in Queensland state which Environment Minister Greg Hunt said Monday could ultimately provide electricity for up to 100 million Indians.

Image: Our flocculent neighbour, the spiral galaxy M33

34 minutes ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Recommended for you

The source of the sky's X-ray glow

20 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

End dawns for Europe's space cargo delivery role

Jul 27, 2014

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Giant crater in Russia's far north sparks mystery

Jul 26, 2014

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

Jul 26, 2014

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (2) Feb 21, 2008
No mention why it has to be so big. A/D converters should be much smaller.
gopher65
not rated yet Feb 21, 2008
... buddy, it's in space. They have to be radiation hardened. That process takes years, so the hardware is always decades behind that of the current consumer market.