Materials can come from the mind, not just the mines

Feb 04, 2008

Dr. Julia E. Medvedeva, assistant professor of physics at Missouri University of Science and Technology, believes materials can come from the mind, not just the mines.

Medvedeva is examining how such properties as optical transparency or electrical conductivity depend on how the atoms are put together on the microscopic level. Such in-depth understanding of underlying physical phenomena allows her to design new materials with properties required for a particular application.

“Right now, we are experiencing a materials revolution,” Medvedeva says. “Advanced materials have already transformed the lives of millions of people around the globe. Now, supercomputers facilitate the progress toward even more high-tech innovations.”

Until recently, scientists concentrated on understanding materials that exist in nature or are prepared in a laboratory. Now, the advent of ever-more-powerful supercomputers and the development of state-of-the-art computational approaches make it possible for researchers to simulate new materials and manipulate their properties based on knowledge of the atomic composition and the spatial arrangement of the atoms.

Such computational “experiments” allow Medvedeva to speed up the search for materials with optimal performance for a specific application – something that could have taken years to achieve using trial-and-error experimental techniques.

In particular, Medvedeva is interested in a unique class of materials called transparent conductors, which share the seemingly contradictory properties of being optically transparent, like glass, and electrically conductive, like metal. Transparent conductors are vital components in many devices, including solar cells, smart windows, flat-panel and flexible displays, invisible, or “see-through,” electronics and gas sensors. Despite the multitude of applications and the growing demand for such devices, only four materials are known to be good transparent conductors – doped zinc, indium, cadmium and tin oxides. Of the four, only two are used commercially.

Although relatively simple compounds, all of the known transparent conductors require sophisticated preparation techniques to achieve optimal balance between sufficient optical transparency and useful electrical conductivity. There are other drawbacks to these

compounds, as well. Due to the increased demand, some of the oxides have become expensive. For example, the cost of indium rose 10-fold from 2002 to 2006. Besides, indium and cadmium are highly toxic.

With financial support from the National Science Foundation (NSF) and the Petroleum Research Fund of the American Chemical Society, Medvedeva is working to develop new transparent conductor materials that are more efficient, easier to fabricate, less expensive and environmentally friendly. Medvedeva’s preliminary research shows that with proper preparation calcium, aluminum or silicon oxides, the most abundant substances in the Earth’s crust, can be made electrically conductive while maintaining their superior optical properties. Further studies of these materials are underway.

To help with this effort, Medvedeva has also received computational grants that give her access to national supercomputer facilities, the National Energy Research Scientific Computing Center and TeraGrid Cluster, supported by the Department of Energy and NSF.

Source: Missouri University

Explore further: Pseudoparticles travel through photoactive material

Related Stories

In the realm of eternal ice

1 hour ago

On 6 November 2010, the light of the star known as NOMAD1 0856-0015072 in the Cetus constellation dimmed. What had happened? A dwarf planet at the edge of the solar system had moved in front of the distant ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.