Materials can come from the mind, not just the mines

Feb 04, 2008

Dr. Julia E. Medvedeva, assistant professor of physics at Missouri University of Science and Technology, believes materials can come from the mind, not just the mines.

Medvedeva is examining how such properties as optical transparency or electrical conductivity depend on how the atoms are put together on the microscopic level. Such in-depth understanding of underlying physical phenomena allows her to design new materials with properties required for a particular application.

“Right now, we are experiencing a materials revolution,” Medvedeva says. “Advanced materials have already transformed the lives of millions of people around the globe. Now, supercomputers facilitate the progress toward even more high-tech innovations.”

Until recently, scientists concentrated on understanding materials that exist in nature or are prepared in a laboratory. Now, the advent of ever-more-powerful supercomputers and the development of state-of-the-art computational approaches make it possible for researchers to simulate new materials and manipulate their properties based on knowledge of the atomic composition and the spatial arrangement of the atoms.

Such computational “experiments” allow Medvedeva to speed up the search for materials with optimal performance for a specific application – something that could have taken years to achieve using trial-and-error experimental techniques.

In particular, Medvedeva is interested in a unique class of materials called transparent conductors, which share the seemingly contradictory properties of being optically transparent, like glass, and electrically conductive, like metal. Transparent conductors are vital components in many devices, including solar cells, smart windows, flat-panel and flexible displays, invisible, or “see-through,” electronics and gas sensors. Despite the multitude of applications and the growing demand for such devices, only four materials are known to be good transparent conductors – doped zinc, indium, cadmium and tin oxides. Of the four, only two are used commercially.

Although relatively simple compounds, all of the known transparent conductors require sophisticated preparation techniques to achieve optimal balance between sufficient optical transparency and useful electrical conductivity. There are other drawbacks to these

compounds, as well. Due to the increased demand, some of the oxides have become expensive. For example, the cost of indium rose 10-fold from 2002 to 2006. Besides, indium and cadmium are highly toxic.

With financial support from the National Science Foundation (NSF) and the Petroleum Research Fund of the American Chemical Society, Medvedeva is working to develop new transparent conductor materials that are more efficient, easier to fabricate, less expensive and environmentally friendly. Medvedeva’s preliminary research shows that with proper preparation calcium, aluminum or silicon oxides, the most abundant substances in the Earth’s crust, can be made electrically conductive while maintaining their superior optical properties. Further studies of these materials are underway.

To help with this effort, Medvedeva has also received computational grants that give her access to national supercomputer facilities, the National Energy Research Scientific Computing Center and TeraGrid Cluster, supported by the Department of Energy and NSF.

Source: Missouri University

Explore further: Unexpected new mechanism reveals how molecules become trapped in ice

add to favorites email to friend print save as pdf

Related Stories

Nanoparticles give up forensic secrets

6 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

Study shows sharks have personalities

7 hours ago

Some sharks are 'gregarious' and have strong social connections, whilst others are more solitary and prefer to remain inconspicuous, according to a new study which is the first to show that the notorious ...

Desktop device to make key gun part goes on sale in US

8 hours ago

The creator of the world's first 3D plastic handgun unveiled Wednesday his latest invention: a pre-programmed milling machine that enables anyone to easily make the core component of a semi-automatic rifle.

Twitter-funded lab to seek social media insights

8 hours ago

A new Twitter-funded research project unveiled Wednesday, with access to every tweet ever sent, will look for patterns and insights from the billions of messages sent on social media.

Recommended for you

A new approach to on-chip quantum computing

2 minutes ago

Commercial devices capable of encrypting information in unbreakable codes exist today, thanks to recent quantum optics advances, especially the generation of photon pairs—tiny entangled particles of light. ...

Hide and seek: Sterile neutrinos remain elusive

20 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

Oct 01, 2014

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

User comments : 0