Rounding up gases, nano-style

Feb 01, 2008

A new process for catching gas from the environment and holding it indefinitely in molecular-sized containers has been developed by a team of University of Calgary researchers, who say it represents a novel method of gas storage that could yield benefits for capturing, storing and transporting gases more safely and efficiently.

“This is a proof of concept that represents an entirely new way of storing gas, not just improving on a method that already exists,” said U of C chemistry professor George Shimizu. “We have come up with a material that mechanically traps gas at high densities without having to use high pressures, which require special storage tanks and generate safety concerns.”

In a paper published in the current online version of the world’s leading material science journal Nature-Materials, Shimizu, fellow U of C professor David Cramb, chemistry graduate student Brett Chandler and colleagues from the National Research Council describe their invention of “molecular nanovalves.”

Using the orderly crystal structure of a barium organotrisulfonate, the researchers developed a unique solid structure that is able to convert from a series of open channels to a collection of air-tight chambers. The transition happens quickly and is controlled simply by heating the material to close the nanovalves, then adding water to the substance to re-open them and release the trapped gas. The paper includes video footage of the process taking place under a microscope, showing gas bubbles escaping from the crystals with the introduction of water.

“The process is highly controllable and because we’re not breaking any strong chemical bonds, the material is completely recyclable and can be used indefinitely,” Shimizu said.

The team intends to continue developing the nanovalve concept by trying to create similar structures using lighter chemicals such as sodium and lithium and structures that are capable of capturing the lightest and smallest of all gases – hydrogen and helium.

“These materials could help push forward the development of hydrogen fuel cells and the creation of filters to catch and store gases like CO2 or hydrogen sulfide from industrial operations in Alberta,” Cramb said.


The paper “Mechanical gas capture and release in a network solid via multiple single-crystalline transformations” is available in the Advanced Online Publication of the journal Nature-Materials.

Source: University of Calgary

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Unique solar lab shines year-round light in Stockholm

22 hours ago

Stockholm is one of the world's most sunlight-deprived capitals for almost half of the year. But now, the city's premier technical university, KTH Royal Institute of Technology, is home to one of the world's ...

Researchers build atomically thin gas and chemical sensors

Feb 19, 2015

The relatively recent discovery of graphene, a two-dimensional layered material with unusual and attractive electronic, optical and thermal properties, led scientists to search for other atomically thin materials ...

Potential new breathalyzer for lung cancer screening

Feb 18, 2015

Researchers from Chongqing University in China have developed a high sensitive fluorescence-based sensor device that can rapidly identify cancer related volatile organic compounds—biomarkers found exclusively in the exhaled ...

NOAA's DSCOVR: Offering a new view of the solar wind

Feb 06, 2015

There's a fascinating spot some 932,000 miles away from Earth where the gravity between the sun and Earth is perfectly balanced. This spot captures the attention of orbital engineers because a satellite can ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.