Engineers Show How to Inhibit Fractures in Solid Surfaces of Aircraft, Electronic Devices

Jan 30, 2008

Engineers at the University of Massachusetts Amherst have found that a strong electric field can stabilize the surface of metals and other solids that conduct electricity, inhibiting the formation of cracks caused by stress. This innovation could improve the function and reliability of a wide variety of machines including aircraft, electronic devices and medical transplants.

Results of the study, led by Dimitrios Maroudas, a professor of chemical engineering at UMass Amherst, were published in the Jan. 25 edition of Physical Review Letters. The research team also includes doctoral student Vivek Tomar and M. Rauf Gungor, a research associate professor.

In metals and other crystalline solids that conduct electricity, stress is generally concentrated on the surface of the material. Stress also builds up at interfaces where two types of material are joined, for example an electronic circuit made of metal and plastic. The UMass Amherst study shows that the action of an electric field, properly applied while a material is under stress, can stabilize the surface or interface, inhibiting the formation of cracks and healing cracks that have already started.

“Traditionally, improving crack resistance has relied on improving the physical properties of the surface through polishing and coating, or strengthening the interfaces,” says Maroudas. “Our study proposes a drastically different approach to improving crack resistance and increasing the lifetime of components and devices.”

The electric field improves crack resistance by causing atoms on the surface of the material to migrate when hit by the flow of electricity or “electron wind,” a process similar to sand grains being blown across a beach. When properly applied, the electric field stabilizes the surface of the stressed solid by transporting material to different areas.

“This finding can have dramatic effects on structures used in modern electronics and nanofabrication technologies,” says Maroudas. “And the broader implications of this work are very exciting. For example, one can consider using magnetic fields for magnetic materials or light for optical materials.”

Source: University of Massachusetts Amherst

Explore further: A new, tunable device for spintronics

add to favorites email to friend print save as pdf

Related Stories

China's Alibaba plans IPO for week of September 8

7 hours ago

Chinese e-commerce giant Alibaba plans to hold its initial public offering on the US stock market the week of September 8, the Wall Street Journal reported Saturday, citing a person familiar with the matter.

Tablet sales slow as PCs find footing

7 hours ago

Tablets won't eclipse personal computers as fast as once thought, according to studies by market tracker International Data Corporation (IDC).

Startups offer banking for smartphone users

7 hours ago

The latest banks are small enough to fit in the palm of your hand. Startups, such as Moven and Simple, offer banking that's designed specifically for smartphones, enabling users to track their spending on the go. Some things ...

Recommended for you

A new, tunable device for spintronics

Aug 28, 2014

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

mrlewish
not rated yet Feb 01, 2008
Wow and Star Trek type thing. ref: Enterprise
Who knew.