Engineers Show How to Inhibit Fractures in Solid Surfaces of Aircraft, Electronic Devices

Jan 30, 2008

Engineers at the University of Massachusetts Amherst have found that a strong electric field can stabilize the surface of metals and other solids that conduct electricity, inhibiting the formation of cracks caused by stress. This innovation could improve the function and reliability of a wide variety of machines including aircraft, electronic devices and medical transplants.

Results of the study, led by Dimitrios Maroudas, a professor of chemical engineering at UMass Amherst, were published in the Jan. 25 edition of Physical Review Letters. The research team also includes doctoral student Vivek Tomar and M. Rauf Gungor, a research associate professor.

In metals and other crystalline solids that conduct electricity, stress is generally concentrated on the surface of the material. Stress also builds up at interfaces where two types of material are joined, for example an electronic circuit made of metal and plastic. The UMass Amherst study shows that the action of an electric field, properly applied while a material is under stress, can stabilize the surface or interface, inhibiting the formation of cracks and healing cracks that have already started.

“Traditionally, improving crack resistance has relied on improving the physical properties of the surface through polishing and coating, or strengthening the interfaces,” says Maroudas. “Our study proposes a drastically different approach to improving crack resistance and increasing the lifetime of components and devices.”

The electric field improves crack resistance by causing atoms on the surface of the material to migrate when hit by the flow of electricity or “electron wind,” a process similar to sand grains being blown across a beach. When properly applied, the electric field stabilizes the surface of the stressed solid by transporting material to different areas.

“This finding can have dramatic effects on structures used in modern electronics and nanofabrication technologies,” says Maroudas. “And the broader implications of this work are very exciting. For example, one can consider using magnetic fields for magnetic materials or light for optical materials.”

Source: University of Massachusetts Amherst

Explore further: Scaling up armor systems

add to favorites email to friend print save as pdf

Related Stories

Pinholes are pitfalls for high performance solar cells

Jan 30, 2015

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

Skin device uses motion to power electronics

Jan 29, 2015

Can a skin patch power wearables? Skin-based generators have become an area of focus among researchers working on how to scavenge muscle motion whereby skin becomes a charge-collector. A detailed report in ...

Recommended for you

Galaxy dust findings confound view of early Universe

17 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

mrlewish
not rated yet Feb 01, 2008
Wow and Star Trek type thing. ref: Enterprise
Who knew.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.