Squeezed crystals deliver more volts per jolt

Jan 30, 2008

A discovery by scientists at the Carnegie Institution has opened the door to a new generation of piezoelectric materials that can convert mechanical strain into electricity and vice versa, potentially cutting costs and boosting performance in myriad applications ranging from medical diagnostics to green energy technologies.

High-performance piezoelectric materials used today, such as those in probes for medical ultrasound, are specially grown crystals of mixed composition known as “solid solutions,” making them difficult to study and expensive to manufacture. But in the January 31 Nature a research team led by Ronald Cohen and Russell Hemley of the Carnegie Institution’s Geophysical Laboratory report that at high pressure pure crystals of lead titanate show the same transitions seen in more complex materials.

Moreover, theory predicts that lead titanate under pressure has the largest piezoelectric response of any material known. This suggests the exciting possibility of low-cost but extremely high-performance piezoelectrics.

“The most useful piezoelectric materials have a critical range of compositions called the morphotopic phase boundary, where the crystal structure changes and the piezoelectric properties are maximal,” says Muhtar Ahart, a co-author of the study. “These are usually complex, engineered, solid solutions. But we showed that a pure compound can display a morphotopic phase boundary under pressure.”

For the study, the researchers placed powdered crystals of lead titanate in a device called a diamond anvil cell, which can generate pressures exceeding those at the center of the Earth. They monitored the changes in crystal structure with pressure using high-energy X-ray beams of the Advanced Photon Source at Argonne National Laboratory in Illinois. Using this data and calculations based on first-principle theoretical computations, the researchers were able to determine the piezoelectric properties of the pure crystals at different pressures.

“It turns out that complex microstructures or compositions are not necessary to obtain strong piezoelectricity,” says Ahart.

The use of piezoelectrics has boomed in recent years and is rapidly expanding. Their ability to convert mechanical energy to electric energy and vice versa has made them invaluable for acoustic transducers for sonar and medical ultrasound, and for tiny, high-precision pumps and motors for medical and other applications. High-performance piezoelectrics have also opened up new possibilities for “energy harvesting,” using ambient motion and vibration to generate electricity where batteries or other power sources are impractical or unavailable.

“This is a field in which theory, experiment, and material development work side-by-side,” says Ronald Cohen, a staff scientist at the Carnegie Institution and a co-author of the study. “Delineating the underlying physics of piezoelectric materials will make it easier to develop new materials and improve existing ones. We’re now poised on the edge of hugely expanded applications of these technologies.”

Source: Carnegie Institution

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Five ways to put tiny targets in front of an X-ray laser

Feb 03, 2015

X-ray devices have long been used to see the inner structure of things, from bone breaks in the human body to the contents of luggage at airport security checkpoints. But to see life's chemistry and exotic materials at the ...

Study reveals missing boundary in PZT phase diagram

Nov 03, 2014

(Phys.org) —Piezoelectric materials, which produce electricity in response to mechanical stress, account for a $12 billion global industry that is projected to grow at a rate of 13.2% per year, according ...

Lab-on-a-chip technology gets a flexible upgrade

Jul 12, 2013

Microfluidic devices move liquids through tiny, hair-sized pathways carved into glass slides and have distinct advantages over traditional laboratories when it comes to medical diagnostics. At these reduced ...

Researchers take the lead out of piezoelectrics

Nov 13, 2009

There is good news for the global effort to reduce the amount of lead in the environment and for the growing array of technologies that rely upon the piezoelectric effect. A lead-free alternative to the current ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Jan 30, 2008
A good example is the push button mechanical striker that we all use to start the barbeque.

The spark created by the loud hammer bang is the
result of a piezoelectric crystal releasing electrons igniting the propane.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.