With a jolt, 'nanonails' go from repellant to wettable

Jan 29, 2008
With a jolt, 'nanonails' go from repellant to wettable
Liquid beads on a surface composed of silicon "nanonails." Made by Tom Krupenkin and J. Ashley Taylor of University of Wisconsin-Madison's Department of Mechanical Engineering, the surface repels virtually all liquids, including water, oil, solvents and detergents. When an electrical current is applied, the liquid slips past the nail heads and between the shanks to wet the entire surface. According to Krupenkin, the nails create such a rough surface at the nanoscale that liquids only touch the surface at the extreme ends of the forest of nails, so the liquid is like sitting on a bed of air. Photo by: courtesy Tom Krupenkin/University of Wisconsin-Madison

Sculpting a surface composed of tightly packed nanostructures that resemble tiny nails, University of Wisconsin-Madison engineers and their colleagues from Bell Laboratories have created a material that can repel almost any liquid.

Add a jolt of electricity, and the liquid on the surface slips past the heads of the nanonails and spreads out between their shanks, wetting the surface completely.

The new material, which was reported this month in Langmuir, a journal of the American Chemical Society, could find use in biomedical applications such as "lab-on-a-chip" technology, the manufacture of self-cleaning surfaces, and could help extend the working life of batteries as a way to turn them off when not in use.

UW-Madison mechanical engineers Tom Krupenkin and J. Ashley Taylor and their team etched a silicon wafer to create a forest of conductive silicon shanks and non-conducting silicon oxide heads. Intriguingly, the ability of the surface of the structure to repel water, oil, and solvents rests on the nanonail geometry.

"It turns out that what's important is not the chemistry of the surface, but the topography of the surface," Krupenkin explains, noting that the overhang of the nail head is what gives his novel surface its dual personality.

A surface of posts, he notes, creates a platform so rough at the nanoscale that "liquid only touches the surface at the extreme ends of the posts. It's almost like sitting on a layer of air."

Source: University of Wisconsin-Madison

Explore further: Demystifying nanocrystal solar cells

add to favorites email to friend print save as pdf

Related Stories

Pinholes are pitfalls for high performance solar cells

Jan 30, 2015

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

Startup working to turn hoverboards into reality

Nov 12, 2014

The more your knees quiver, the more the 90 pound board you're perched on, floating above a pillow of air, seems about to shoot out from under your feet. A high-pitched engine scream bounces from the sheet ...

Google execs discuss regulation, innovation and bobble-heads

Oct 30, 2014

Eric Schmidt and Jonathan Rosenberg help run Google, one of the world's best-known, most successful - and most controversial - companies. They've just published a new book, "How Google Works," a guide to managing what they ...

Recommended for you

DNA nanoswitches reveal how life's molecules connect

Jan 30, 2015

A complex interplay of molecular components governs almost all aspects of biological sciences - healthy organism development, disease progression, and drug efficacy are all dependent on the way life's molecules ...

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.