Earth's getting 'soft' in the middle

Jan 24, 2008
Earth

Since we can’t sample the deepest regions of the Earth, scientists watch the velocity of seismic waves as they travel through the planet to determine the composition and density of that material. Now a new study suggests that material in part of the lower mantle has unusual electronic characteristics that make sound propagate more slowly, suggesting that the material there is softer than previously thought.

The results call into question the traditional techniques for understanding this region of the planet. The authors, including Alexander Goncharov from the Carnegie Institution’s Geophysical Laboratory, present their results in the January 25, 2008, issue of Science.

The lower mantle extends from about 400 miles to 1800 miles (660-2900 kilometers) into Earth and sits atop the outer core. Pressures and temperatures are so brutal there that materials are changed into forms that don’t exist in rocks at the planet’s surface and must be studied under carefully controlled conditions in the laboratory. The pressures range from 230,000 times the atmospheric pressure at sea level (23 GPa), to 1.35 million times sea-level pressure (135 GPa). And the heat is equally extreme—from about 2,800 to 6,700 degrees Fahrenheit (1800K–4000K).

Iron is abundant in the Earth, and is a major component of the minerals ferropericlase and the silicate perovskite in the lower mantle. In previous work, researchers found that the outermost electrons of iron in ferropericlase are forced to pair up under the extreme pressures creating a so-called spin-transition zone within the lower mantle.

“What happens when unpaired electrons—called a high-spin state—are forced to pair up is that they transition to what is called a low-spin state. And when that happens, the conductivity, density, and chemical properties change,” explained Goncharov.

“What’s most important for seismology is the acoustic properties—the propagation of sound. We determined the elasticity of ferropericlase through the pressure-induced high-spin to low-spin transition. We did this by measuring the velocity of acoustic waves propagating in different directions in a single crystal of the material and found that over an extended pressure range (from about 395,000 to 590,000 atmospheres) the material became ‘softer’—that is, the waves slowed down more than expected from previous work. Thus, at high temperature corresponding distributions will become very broad, which will result in a wide range of depth having subtly anomalous properties that perhaps extend through most of the lower mantle.”

Source: Carnegie Institution

Explore further: Historic climate data provided by Mediterranean seabed sediments

add to favorites email to friend print save as pdf

Related Stories

Methane storage targets are too high

Feb 02, 2015

Using natural gas for car fuel is a challenge, requiring massive research efforts to find materials that can efficiently store it. However, a Swiss-US study concludes that the best materials have not only ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

DARPA to Atlas contest hopefuls: Time to cut the cord

Jan 21, 2015

Super Bowls. World Cups. Marathons. Wimbledon. Months and days are marked off by fans and supporters for big events and, for robotics watchers, June cannot come fast enough. The DARPA Robotics Challenge Finals ...

Davos elites warned about catastrophic cyberattacks

Jan 24, 2015

Attacks on power plants, telecommunications and financial systems, even turning all of Los Angeles' traffic lights green: Davos elites were warned Saturday of the terrifying possibilities of modern cyber ...

Recommended for you

Lightning plus volcanic ash make glass

16 hours ago

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

A new level of earthquake understanding

22 hours ago

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

ModernMan
2.8 / 5 (5) Jan 25, 2008
The picture of the Earth looked strange to me, and I couldn't figure out why. Then I realized that it's not very often that the eastern hemisphere is pictured in US news stories.
out7x
1 / 5 (2) Jan 25, 2008
P or S waves? anisotropy due to pressure, or heat, or crystal?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.