CMS celebrates the lowering of its final detector element

Jan 22, 2008

In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERN’s Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration, as the experiment is the first of its kind to be constructed above ground and then lowered, element by element, 100 metres below. It marks the culmination of eight years of work in the surface hall, and moves CMS into final commissioning before registering proton-proton collisions at the LHC.

The journey started 14 months ago, when the first of 15 elements of the CMS detector was carefully lowered, with just a few centimetres of leeway, by a huge gantry crane, custom-built by the VSL group. The final element is an asymmetrical cap that fits into the barrel element of the experiment and weighs around 1430 tonnes. It includes fragile detectors that will help identify and measure the energy of particles created in LHC collisions.

“CMS is unique in the way that the detector was constructed in very large elements in a surface assembly building and then lowered underground”, explained Austin Ball, CMS Technical Coordinator. “This is likely to become a model for future experiments, as the technique can now be considered proven.”

There are many advantages to planning an experiment in this way, such as the ability to save time by working simultaneously on the detector while the experimental cavern was being excavated. There were also fewer risks when working on the surface, and elements of detector could be tested together before lowering them.

Experiments at the LHC will allow physicists to take a big leap on a journey that started with Newton's description of gravity. Gravity is ubiquitous since it acts on mass, but so far science is unable to explain why particles have the masses they have. Experiments such as CMS may provide the answer.

LHC experiments will also probe the mysterious missing mass and dark energy of the Universe, they will investigate the reason for nature's preference for matter over antimatter, probe matter as it existed close to the beginning of time and look for extra dimensions of spacetime.

“This is a very exciting time for physics,” said CMS spokesman Tejinder Virdee, “the LHC is poised to take us to a new level of understanding of our Universe.”

Source: CERN

Explore further: What is Nothing?

add to favorites email to friend print save as pdf

Related Stories

Upgrading the Large Hadron Collider

Jul 09, 2014

Scientists from the Particle Physics Research Group at the University of Bristol are currently working on upgrades to the Large Hadron Collider (LHC), the particle accelerator and collider located at CERN ...

Results from CERN presented at ICHEP

Jul 08, 2014

Speaking at press conference held during the 37th International Conference on High Energy Physics, ICHEP, in Valencia, Spain this morning CERN Director General Rolf Heuer gave a resume of results from CERN that are being ...

CMS closes major chapter of Higgs measurements

Jul 04, 2014

Since the discovery of a Higgs boson by the CMS and ATLAS Collaborations in 2012, physicists at the LHC have been making intense efforts to measure this new particle's properties. The Standard Model Higgs ...

CERN announces LHC restart schedule

Jun 24, 2014

The Large Hadron Collider (LHC), the largest and most powerful particle accelerator in the world, has started to get ready for its second three-year run. Cool down of the vast machine has already begun in ...

New data bolsters Higgs boson discovery

Jun 23, 2014

(Phys.org) —If evidence of the Higgs boson revealed two years ago was the smoking gun, particle physicists have now found a few of the bullets. ...

Recommended for you

What is Nothing?

13 hours ago

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

16 hours ago

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0