Chandra data reveal rapidly whirling black holes

Jan 10, 2008
Chandra data reveal rapidly whirling black holes
Results from NASA's Chandra X-ray Observatory, combined with new theoretical calculations, provide one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The images on the left show 4 out of the 9 large galaxies included in the Chandra study, each containing a supermassive black hole in its center. Credit: Credit: X-ray: NASA/CXC, Illustration: CXC/M. Weiss

A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth.

A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates.

"We think these monster black holes are spinning close to the limit set by Einstein’s theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas.

The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly.

According to Einstein’s theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet.

Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings.

"Extremely fast spin might be very common for large black holes," said co-investigator Richard Bower of Durham University. "This might help us explain the source of these incredible jets that we see stretching for enormous distances across space."

One significant connection consequence of powerful, black-hole jets in galaxies in the centers of galaxy clusters is that they can pump enormous amounts of energy into their environments, and heat the gas around them.

This heating prevents the gas from cooling, and affects the rate at which new stars form, thereby limiting the size of the central galaxy. Understanding the details of this fundamental feedback loop between supermassive black holes and the formation of the most massive galaxies remains an important goal in astrophysics.

Source: Chandra X-ray Center

Explore further: Pulse of a dead star powers intense gamma rays

add to favorites email to friend print save as pdf

Related Stories

DRAGNs in the sky

Sep 09, 2014

A radio galaxy is a galaxy that emits large amounts of radio waves. They were first discovered in the 1950s, but it wasn't until the 1960s when a technique known as aperture synthesis was developed that we ...

Mysterious quasar sequence explained

14 hours ago

Quasars are supermassive black holes that live at the center of distant massive galaxies. They shine as the most luminous beacons in the sky across the entire electromagnetic spectrum by rapidly accreting ...

What would it be like to fall into a black hole?

Sep 08, 2014

Let's say you decided to ignore some of my previous advice. You've just purchased yourself a space dragon from the Market on the Centauri Ringworld, strapped on your favorite chainmail codpiece and sonic ...

Variables of nature

Sep 05, 2014

Within physics there are certain physical quantities that play a central role. These are things such as the mass of an electron, or the speed of light, or the universal constant of gravity. We aren't sure ...

Recommended for you

Violent origins of disc galaxies probed by ALMA

5 hours ago

For decades scientists have believed that galaxy mergers usually result in the formation of elliptical galaxies. Now, for the the first time, researchers using the Atacama Large Millimeter/sub-millimeter ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

manifespo
3 / 5 (2) Jan 10, 2008
Is a black hole actually a Hole in space,
or does it just appear that way to our instruments, when in fact it is really a galactic dark quark-sun,
of a supermassive magnetic-quark type of star.
joefarah
3 / 5 (2) Jan 11, 2008
I've posted this before but with little response... The rotation of the black hole is creating a tremendous magnetic field. The charged matter in the black hole is rotating around a magnetic core, being induced by the rapid and massive charge rotation. This in turn exerts a postitive acceleration of charged particles diverted to the two poles. This positive acceleration is large enough to counter some (or even all) of the gravitational negative acceleration. As a result, the matter does not have to travel at the speed of light to escape the black hole through the poles as the net acceleration at the poles is smaller than -c/sec. That is although the net gravitational acceleration is greater than -c/sec for the black hole, along the poles, the net acceleration is smaller than -c/sec and matter and light can actually escape the black hole through these poles.
Joe