Chandra data reveal rapidly whirling black holes

Jan 10, 2008
Chandra data reveal rapidly whirling black holes
Results from NASA's Chandra X-ray Observatory, combined with new theoretical calculations, provide one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The images on the left show 4 out of the 9 large galaxies included in the Chandra study, each containing a supermassive black hole in its center. Credit: Credit: X-ray: NASA/CXC, Illustration: CXC/M. Weiss

A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth.

A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates.

"We think these monster black holes are spinning close to the limit set by Einstein’s theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas.

The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly.

According to Einstein’s theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet.

Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings.

"Extremely fast spin might be very common for large black holes," said co-investigator Richard Bower of Durham University. "This might help us explain the source of these incredible jets that we see stretching for enormous distances across space."

One significant connection consequence of powerful, black-hole jets in galaxies in the centers of galaxy clusters is that they can pump enormous amounts of energy into their environments, and heat the gas around them.

This heating prevents the gas from cooling, and affects the rate at which new stars form, thereby limiting the size of the central galaxy. Understanding the details of this fundamental feedback loop between supermassive black holes and the formation of the most massive galaxies remains an important goal in astrophysics.

Source: Chandra X-ray Center

Explore further: Young binary star system may form planets with weird and wild orbits

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

1 hour ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

1 hour ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

2 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Fermi satellite detects gamma-rays from exploding novae

2 hours ago

The Universe is home to a variety of exotic objects and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. ASU Regents' Professor Sumner Starrfield is part of a team that ...

Image: Hubble serves a slice of stars

9 hours ago

The thin, glowing streak slicing across this image cuts a lonely figure, with only a few foreground stars and galaxies in the distant background for company.

Evidence of a local hot bubble carved by a supernova

Jul 30, 2014

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

Astronomers measure weight of galaxies, expansion of universe

Jul 30, 2014

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Jan 10, 2008
Is a black hole actually a Hole in space,
or does it just appear that way to our instruments, when in fact it is really a galactic dark quark-sun,
of a supermassive magnetic-quark type of star.
3 / 5 (2) Jan 11, 2008
I've posted this before but with little response... The rotation of the black hole is creating a tremendous magnetic field. The charged matter in the black hole is rotating around a magnetic core, being induced by the rapid and massive charge rotation. This in turn exerts a postitive acceleration of charged particles diverted to the two poles. This positive acceleration is large enough to counter some (or even all) of the gravitational negative acceleration. As a result, the matter does not have to travel at the speed of light to escape the black hole through the poles as the net acceleration at the poles is smaller than -c/sec. That is although the net gravitational acceleration is greater than -c/sec for the black hole, along the poles, the net acceleration is smaller than -c/sec and matter and light can actually escape the black hole through these poles.