U of M physicist reads the history of the solar system in grains of comet dust

Jan 03, 2008
Artist's impression of Stardust's encounter with Comet Wild 2. Credit: NASA
Artist´s impression of Stardust´s encounter with Comet Wild 2. Scientists believe the material snatched from the trail of a comet could provide dramatic information about the birth of the solar system and the origins of life on Earth. Launched in 1999, the 385-kilogram (849-pound) probe, circled the Sun twice and then flew in January 2004 by comet Wild 2, which was located at the time next to Jupiter. Credit: NASA

Four years ago, NASA's Stardust spacecraft chased down a comet and collected grains of dust blowing off its nucleus. When the spacecraft Comet Wild-2 returned, comet dust was shipped to scientists all over the world, including University of Minnesota physics professor Bob Pepin. After testing helium and neon trapped in the dust specks, Pepin and his colleagues report that while the comet formed in the icy fringes of the solar system, the dust appears to have been born close to the infant sun and bombarded by intense radiation from these and other gases before being flung out beyond Neptune and trapped in the comet. The research appears in the Jan. 4 issue of the journal Science.

The finding opens the question of what was going on in the early life of the solar system to subject the dust to such intense radiation and hurl them hundreds of millions of miles from their birthplace.

The studies of cometary dust are part of a larger effort to trace the history of our celestial neighborhood.

"We want to establish what the solar system looked like in the very early stages," said Pepin. "If we establish the starting conditions, we can tell what happened in between then and now." One early event was the birth of Earth's moon, about 50 million years after the solar system formed.

Also, the gases he studies have relevance even closer to home. "Because some scientists have proposed that comets have contributed these gases to the atmospheres of Earth, Venus and Mars, learning about them in comets would be fascinating," he said.

Comet Wild-2 (pronounced Vilt-two) is thought to have originated in the Kuiper Belt, a comet-rich region stretching from just inside the orbit of Neptune to well beyond Pluto. As it grew in this roughly -360 F region, it incorporated grains of dust and ambient gas.

The comet received a visit from the Stardust spacecraft in early January 2004, two years after its launch. Veering as close as 149 miles to the comet nucleus, Stardust used a spongy, ultralight glass-fiber material called aerogel to trap the dust. At the moment of encounter, the spacecraft exposed a sheet of aerogel -- supported by a framework -- to the stream of particles blowing off the nucleus.

"It looked like a tennis racket," said Pepin. "It was exposed for approximately 20 minutes."

The aerogel trapped aggregates of fine particles that hit at 13,000 miles per hour and split on impact. The collisions left drumstick-shaped trails pointing inward from the surface of the aerogel.

After the collection, the spacecraft headed home and parachuted its payload safely back to Earth in January 2006. A few months later, Pepin received three sub-samples of particles and colleagues at Nancy University, France, received two others, all from the same particle "hit."

Their task was to analyze gases locked in tiny dust grains about a quarter of a billionth of a gram in weight. As a first step, the researchers heated the grains to about 1,400 degrees C., liberating gases imprisoned for eons.

"The particles probably came from the first million years or even less, of the solar system's existence," Pepin said. That would be close to 4.6 billion years ago. If our middle-aged sun were 50 years old, then the particles were born in the first four days of its life.


Source: University of Minnesota

Explore further: Meteorites yield clues to Martian early atmosphere

add to favorites email to friend print save as pdf

Related Stories

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

Comet lander awakes from long hibernation

Mar 28, 2014

European space experts said on Friday they had successfully reawakened a fridge-sized robot designed to make the first-ever spacecraft landing on a comet.

Astronomers looking for clues to water's origins

Mar 27, 2014

A gas and dust cloud collapses to form a star. Amid a whirling disc of debris, little bits of rock coated with liquid water and ice begin to stick together. It is this stage of a star's formation that astronomers ...

Rosetta sets sights on destination comet

Mar 27, 2014

(Phys.org) —ESA's Rosetta spacecraft has caught a first glimpse of its destination comet since waking up from deep-space hibernation on 20 January.

Comet-probing robot to wake from hibernation

Mar 26, 2014

A fridge-sized robot lab hurtling through the Solar System aboard a European probe is about to wake from hibernation and prepare for the first-ever landing by a spacecraft on a comet.

Rosetta's final sprint to the comet

Jan 21, 2014

(Phys.org) —After a ten-year journey and a long, deep sleep the Rosetta space probe was woken up on 20 January. The vehicle now starts the last leg of its journey which will lead it to the 67P/Churyumov-Gerasimenko ...

Recommended for you

Meteorites yield clues to Martian early atmosphere

1 hour ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

4 hours ago

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Image: Rosetta's Philae lander snaps a selfie

5 hours ago

Philae is awake… and taking pictures! This image, acquired last night with the lander's CIVA (Comet nucleus Infrared and Visible Analyzer) instrument, shows the left and right solar panels of ESA's well-traveled ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1.3 / 5 (3) Jan 04, 2008
Not much info here. What implications are there for the earth's oceans formation?
seanpu
1 / 5 (2) Jan 04, 2008
"while the comet formed in the icy fringes of the solar system" no info on why they thought this
"the dust appears to have been born close to the infant sun " why draw that conclusion?
"bombarded by intense radiation from these and other gases" oh really?
"before being flung out beyond Neptune and trapped in the comet." hmm. why do they think that?

Zenmaster
1 / 5 (1) Jan 04, 2008
These findings (and recent others) seem to support Oliver K. Manuel's observations.

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...