Sulfur dioxide may have helped maintain a warm early Mars

Dec 20, 2007
Mars

Sulfur dioxide (SO2) may have played a key role in the climate and geochemistry of early Mars, geoscientists at Harvard University and the Massachusetts Institute of Technology suggest in the Dec. 21 issue of the journal Science. Their hypothesis may resolve longstanding questions about evidence that the climate of the Red Planet was once much warmer than it is today.

The Science paper's authors are Itay Halevy, a Ph.D. candidate in Harvard's Department of Earth and Planetary Sciences; Daniel Schrag, professor of earth and planetary sciences and environmental engineering at Harvard; and Maria Zuber, professor of earth, atmospheric, and planetary sciences at MIT.

"There is abundant evidence for a warmer climate, perhaps even a liquid water ocean, early in Martian history, between 3.5 and 4 billion years ago," says Schrag, the paper's senior author. "However, scientists have found it difficult to reconcile this evidence with our understanding of how the climate system is regulated on Earth."

Over millions of years, the Earth's climate has been controlled by the carbon cycle and its effect on carbon dioxide, the main greenhouse gas. On Earth, there is a balance between carbon dioxide vented from volcanoes and chemical reactions with silicate rocks on the Earth's surface that remove carbon dioxide from the atmosphere and convert it to calcium carbonate, commonly known as limestone. Scientists believe that this balance has helped maintain Earth's habitability over the last 4 billion years.

On Mars, there is not enough volcanic activity today to maintain this cycle. But this was not true some 4 billion years ago, when a giant volcanic complex called Tharsis erupted over tens to hundreds of millions of years -- and also a time when evidence suggests Mars had a much warmer climate. However, this carbon cycle on early Mars should have produced vast quantities of limestone like on Earth, and yet almost none has been found.

The new hypothesis points the finger at sulfur dioxide, another gas released by volcanoes. Sulfur dioxide is a powerful greenhouse gas, like carbon dioxide, and it is more reactive with silicate rocks than carbon dioxide. On Earth, sulfur dioxide is rapidly oxidized to sulfate, and then removed from the atmosphere. The authors argue that the atmosphere of early Mars would have lacked oxygen, so sulfur dioxide would remain much, much longer.

"The sulfur dioxide would essentially preempt the role of carbon dioxide in surface weathering reactions," says Halevy, the first author of the report. "The presence of even a small amount of sulfur dioxide in the atmosphere would contribute to the warmer climate, and also prevent limestone deposits from forming."

In place of limestone, the authors predict that sulfur minerals would form in any standing water on Mars. This may explain the surprising finding of the rovers that have identified sulfur minerals as an abundant component of Martian soils.

"We think we now understand why there is so little carbonate on Mars, and so much sulfur," Halevy says.

"Our hypothesis may also be important for understanding the early Earth," Schrag says. "Before the origin of life, our atmosphere may have looked much like early Mars. Sulfur dioxide may have had an important role then as well."

If correct, the hypothesis implies that the oceans in which life evolved were much more acidic than previously thought. The early Earth may also provide a test for the hypothesis through the analysis of isotopes of sulfur in ancient mineral deposits.

Source: Harvard University

Explore further: Suomi NPP satellite spots birth of Tropical Cyclone Kate

add to favorites email to friend print save as pdf

Related Stories

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

NASA considers possibilities for manned mission to Venus

Dec 18, 2014

(Phys.org) —NASA's Systems Analysis and Concepts Directorate has issued a report outlining a possible way for humans to visit Venus, rather than Mars—by hovering in the atmosphere instead of landing on ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

Recommended for you

Suomi NPP satellite spots birth of Tropical Cyclone Kate

Dec 24, 2014

The tropical low pressure area previously known as System 95S organized and strengthened into Tropical Cyclone Kate on Dec. 24 and the Cocos Keeling Islands are expected to feel its effects on Dec. 25 and ...

NASA looks at some severe holiday weather from space

Dec 24, 2014

Severe weather in the form of tornadoes is not something people expect on Christmas week but a storm system on Dec. 23 brought tornadoes to Mississippi, Georgia and Louisiana. As the storm moved, NASA's RapidScat ...

NASA satellite spots Christmas

Dec 24, 2014

If you're looking for Christmas NASA's Aqua satellite spotted it in the Southern Indian Ocean. It's a coral atoll (a ring-shaped reef, island, or chain of islands made up of coral) in the northern Line Islands ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
not rated yet Dec 21, 2007
It is not clear why sulfates(CaSO4) would dominate over carbonates(CaCO3) on Mars. Seems like more oxygen would be required.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.