In search for water on Mars, clues from Antarctica

Dec 10, 2007
In search for water on Mars, clues from Antarctica
Site in Pearse Valley of the McMurdo Dry Valleys in Antarctica. Saltwater seeped to the surface and evaporated, leaving behind a salty crust. Photo courtesy of Ohio State University.

Scientists have gathered more evidence that suggests flowing water on Mars -- by comparing images of the red planet to an otherworldly landscape on Earth.

In recent years, scientists have examined images of several sites on Mars where water appears to have flowed to the surface and left behind a trail of sediment. Those sites closely resemble places where water flows today in the McMurdo Dry Valleys in Antarctica , the new study has found.

The new study bolsters the notion that liquid water could be flowing beneath the surface of Mars. And since bacteria thrive in the liquid water flowing in the Dry Valleys, the find suggests that bacterial life could possibly exist on Mars as well.

Researchers have used the Dry Valleys as an analogy for Mars for 30 years, explained Berry Lyons, professor of earth sciences and director of the Byrd Polar Research Center at Ohio State University.

Lyons is lead principal investigator for the National Science Foundation's Long Term Ecological Research (LTER) Network, a collaboration of more than 1,800 scientists who study the ecology of sites around the world.

One of the LTER sites is in the Dry Valleys, a polar desert in Antarctica with year-round saltwater flowing beneath the surface. With temperatures that dip as low as negative 85 degrees Fahrenheit, it's as cold as the Martian equator, and its iron-rich soil gives it a similar red color.

“If you looked at pictures of both landscapes side by side, you couldn't tell them apart,” Lyons said.

In the new study, LTER scientists did just that -- they compared images of water flows in the Dry Valleys to images of gullies on Mars that show possible evidence of recent water flow.

Team member Peter Doran of the University of Illinois at Chicago presented the results Tuesday, December 11, 2007, at the American Geophysical Union meeting at San Francisco .

The scientists' conclusion: the Martian sites closely resemble sites in the Dry Valleys where water has seeped to the surface.

The water in the Dry Valleys can be very salty -- it's full of potassium chloride, the same kind of salt we sprinkle on roadways to melt ice. That's why the water doesn't freeze. Natural springs form from melted ground ice or buried glacier ice, and the saltwater percolates to the surface.

“Even in the dead of winter, there are locations with salty water in the Dry Valleys ,” Lyons said. “Two months a year, we even have lakes of liquid water covered in ice.”

But after the water reaches the surface, it evaporates, leaving behind salt and sediment.

The same thing would happen on Mars, he added.

Because the suspected sediment sites on Mars closely resemble known sediment sites in the Dry Valleys, Lyons and his colleagues think that liquid saltwater is likely flowing beneath the Martian surface.

Lyons, who has led many expeditions to Antarctica, said that his team will continue to compare what they learn on Earth to any new evidence of water uncovered on Mars.

As they walk across the Dry Valleys, they can't help but compare the two.

“There's just something about that landscape, about being so far from civilization, that makes you think about other worlds,” he said.

Source: Ohio State University, by Pam Frost Gorder

Explore further: Asteroid named for University of Utah makes public debut

add to favorites email to friend print save as pdf

Related Stories

A salty, martian meteorite offers clues to habitability

Aug 28, 2014

Life as we know it requires energy of some sort to survive and thrive. For plants, that source of energy is the Sun. But there are some microbes that can survive using energy from chemical reactions. Some ...

Drying Sierra meadows could worsen California drought

Aug 21, 2014

Carpeting the high valleys of Yosemite and other parts of the Sierra Nevada, mountain meadows are more than an iconic part of the California landscape. The roughly 17,000 high altitude meadows help regulate ...

Robotic rock climbers could uncover clues to Mars' past

Aug 04, 2014

A robot that can scale the faces of steep cliffs might one day help explore Mars and find signs of life. The latest experiments with this "Cliffbot" showed it could help examine places otherwise difficult ...

Recommended for you

Getting to the root of the problem in space

10 hours ago

When we go to Mars, will astronauts be able to grow enough food there to maintain a healthy diet? Will they be able to produce food in NASA's Orion spacecraft on the year-long trip to Mars? How about growing ...

The difference between CMEs and solar flares

12 hours ago

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explain ...

Scientific instruments of Rosetta's Philae lander

13 hours ago

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

User comments : 0