Researcher studies carbon fibers for nuclear reactor safety

Dec 10, 2007

Carbon fibers that are only one-tenth the size of a human hair, but three times stronger than steel, may hold up to the intense heat and radiation of next generation nuclear power generators, providing a safety mechanism. The “Gen IV” power-generating reactors are being designed to provide low-cost electricity, but with a built-in safety mechanism current reactors do not have.

The Department of Energy (DoE) has awarded chemical engineering professor Amod Ogale, deputy director of the Center for Advanced Engineering Fibers and Films (CAEFF), a $450,000 grant to research carbon fibers embedded into a carbon matrix that do not melt in extreme temperatures for potential use in Gen IV power generators. Presently, about 20 percent of electricity produced in the United States is from nuclear sources.

“One proposed design of the next generation of nuclear plants will consist of a helium-cooled generator that will operate in the range of 1,200 to 1,800 degrees Fahrenheit,” says Ogale. “A critical safety requirement for this reactor is that it can shut down safely in the event of a malfunction where coolant flow is interrupted. Steel alloys currently used internally in reactors melt at the peak temperature of 2500 degrees Fahrenheit, where carbon fiber composites do not.”

Carbon fiber composites are already used successfully in jetliner brake systems because of their ability to withstand high temperatures without melting. However, their performance in a nuclear environment is not adequately understood.

Ogale and his team will study the neutron-radiation damage effects on carbon fibers.

His prior research has shown that including carbon nanotubes (large molecules of carbon that are tube-shaped and 30 nanometers in size) in carbon fibers leads to the development of a more uniform texture that improves the properties of the ultra-thin carbon fibers.

In his research, Ogale expects to generate high graphitic crystallinity, a solid ordered pattern which is evenly distributed so that any changes in fiber properties due to radiation can be minimized.

Irradiation experiments will be conducted in collaboration with researchers at Oak Ridge National Labs. South Carolina State University researchers also will participate in the study.

“This research will lead to a fundamental understanding of how the nanotubes set themselves up to provide radiation-damage tolerance to carbon fibers,” said Ogale.

Source: Clemson University

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

add to favorites email to friend print save as pdf

Related Stories

New signs of eruption at Iceland volcano

30 minutes ago

Teams monitoring Iceland's Bardarbunga volcano have found evidence of a possible underground eruption as powerful earthquakes continue to shake the area, Icelandic authorities said Thursday.

NASA sees a weaker Tropical Storm Marie

49 minutes ago

When NOAA's GOES-West satellite captured an image of what is now Tropical Storm Marie, weakened from hurricane status on August 28, the strongest thunderstorms were located in the southern quadrant of the ...

New tool aids stem cell engineering for medical research

1 hour ago

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SDMike
not rated yet Dec 10, 2007
Since graphite acts as a neutron moderator, how will carbon fibers interact with neutrons?