Climate change predicted to drive trees northward

Dec 03, 2007

The most extensive and detailed study to date of 130 North American tree species concludes that expected climate change this century could shift their ranges northward by hundreds of kilometers and shrink the ranges by more than half. The study, by Daniel W. McKenney of the Canadian Forest Service and his colleagues, is reported in the December issue of BioScience.

McKenney’s study is based on an extensive data-gathering effort and thus more comprehensive than studies based on published range maps. It includes data from Canada as well as from the United States. Observations of where trees are found are used to define the “climate envelope” of each species.

If the trees were assumed to respond to climate change by dispersing their progeny to more favorable locations, McKenney and colleagues found, ranges of the studied species would move northward by some 700 kilometers and decrease in size by an average of 12 percent (with some increasing while others decreased). If the species were assumed unable to disperse, the average expected range shift was 320 kilometers, and “drastic” range reductions of 58 percent were projected. The authors believe that most species will probably fall somewhere between these two extremes of ability to disperse.

The climate measures studied were chosen to represent important gradients for plants: heat and moisture. Two climate change scenarios were modeled. One assumed that carbon dioxide emissions would start to decrease during the coming century, the other that they would continue to increase. Each scenario was investigated with three well-known models of global climate, with broadly similar results.

The authors note that their study investigated only a sample of the 700 or so tree species in North America, and that under climate change, new species might colonize the southern part of the continent from tropical regions. A companion article by the same authors provides more detail about their climate envelope method as applied to one species, the sugar maple.

Source: American Institute of Biological Sciences

Explore further: Looted and leaking, South Sudan's oil wells pose health risk

add to favorites email to friend print save as pdf

Related Stories

Chasing a changing climate

Feb 20, 2015

Is it better to live in the north or the south? It's a question that even birds are struggling to answer as the climate in different parts of Britain changes in a variety of ways. Scientists have known for ...

Fighting decline of pollinators in Europe

Feb 19, 2015

Pollination is crucial to providing food security with 84% of European crops benefitting, at least in part, from insect pollination and 78% of temperate wildflowers needing biotic pollination. An estimated ...

Ocean acidification slows algae growth in the Southern Ocean

21 hours ago

Bremerhaven, 24 February 2015. In a recent study, scientists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), demonstrate for the first time that ocean acidification could have negative ...

Recommended for you

Music festivals go cleaner, greener

17 hours ago

Every summer, tens of thousands of people across Australia revel in live outdoor music, staying for a day or pitching their tents for a weekend. When the music dies, however, what's left may be less appealing ...

Did climate change help spark the Syrian war?

Mar 02, 2015

A new study says a record drought that ravaged Syria in 2006-2010 was likely stoked by ongoing manmade climate change, and that the drought may have helped propel the 2011 Syrian uprising. Researchers say ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.