Physicists use plastics to detect radiation

Nov 21, 2007

In applications ranging from hospital X-ray machines to instruments for astronomy, the standard way to measure the dose of radiation is to use a detector made from an inorganic semiconductor, such as silicon. It is not easy, however, to use this type of detector over large areas, and inorganic detectors are not flexible.

A team of researchers from the Department of Physics at the University of Surrey, led by Dr. Paul Sellin, has developed a new type of radiation detector made from a new type of plastic that conducts electricity. As the radiation dose increases, a greater current flows in the plastic detector, allowing an accurate measurement to be made. The research effort has received a boost recently in the form of a one-year research grant from the Science and Technology Facilities Council. The grant is being shared with Centronic Ltd., a Croydon-based company that manufactures and develops radiation detectors.

The Surrey team has published their preliminary findings in the prestigious international journal, Applied Physics Letters. Dr. Sellin and his collaborators in the Physics Department, Dr. Alan Dalton and Dr. Joe Keddie, have also filed a patent on organic radiation detectors with support from the University.

Dr. Sellin commented: "This successful research has grown from a collaborative effort drawing on our expertise in radiation detection and the experience within the Soft Condensed Matter Physics Group in making polymer films and understanding their properties."

Dr. Keddie added, "Within the Physics Department, the Radiation Laboratories and the Soft Matter Laboratories have benefited from recent investment from government SRIF funding. This investment is clearly leading to exciting scientific results combined with a patent and further funding."

Source: University of Surrey

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Getting a grip on exotic atomic nuclei

Feb 18, 2015

A new model describing atomic nuclei, proposed by a physicist from the University of Warsaw Faculty of Physics, more accurately predicts the properties of various exotic isotopes that are created in supernova explosions or ...

Firing up the proton smasher

Feb 17, 2015

The Large Hadron Collider is being brought back to life, ready for Run II of the "world's greatest physics experiment". Cambridge physicists are among the army who keep it alive.

Wanted: The faces of the chemical crowd

Feb 11, 2015

Elements and their compounds will no longer be able to hide in mixtures, even if the latter are made up of many components. The end of chemical incognito is a result of the development at Warsaw's Polish ...

Particle physicists discuss JUNO neutrino experiment

Jan 28, 2015

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.