Physicists use plastics to detect radiation

Nov 21, 2007

In applications ranging from hospital X-ray machines to instruments for astronomy, the standard way to measure the dose of radiation is to use a detector made from an inorganic semiconductor, such as silicon. It is not easy, however, to use this type of detector over large areas, and inorganic detectors are not flexible.

A team of researchers from the Department of Physics at the University of Surrey, led by Dr. Paul Sellin, has developed a new type of radiation detector made from a new type of plastic that conducts electricity. As the radiation dose increases, a greater current flows in the plastic detector, allowing an accurate measurement to be made. The research effort has received a boost recently in the form of a one-year research grant from the Science and Technology Facilities Council. The grant is being shared with Centronic Ltd., a Croydon-based company that manufactures and develops radiation detectors.

The Surrey team has published their preliminary findings in the prestigious international journal, Applied Physics Letters. Dr. Sellin and his collaborators in the Physics Department, Dr. Alan Dalton and Dr. Joe Keddie, have also filed a patent on organic radiation detectors with support from the University.

Dr. Sellin commented: "This successful research has grown from a collaborative effort drawing on our expertise in radiation detection and the experience within the Soft Condensed Matter Physics Group in making polymer films and understanding their properties."

Dr. Keddie added, "Within the Physics Department, the Radiation Laboratories and the Soft Matter Laboratories have benefited from recent investment from government SRIF funding. This investment is clearly leading to exciting scientific results combined with a patent and further funding."

Source: University of Surrey

Explore further: Mapping the optimal route between two quantum states

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

17 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

19 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

20 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Recommended for you

Mapping the optimal route between two quantum states

17 hours ago

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal ...

Spin-based electronics: New material successfully tested

21 hours ago

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

Verifying the future of quantum computing

23 hours ago

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 0