Researchers Discover Surface Orbital 'Roughness' in Manganites

Nov 20, 2007

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that in a class of materials called manganites, the electronic behavior at the surface is considerably different from that found in the bulk. Their findings, which were published online in the November 18, 2007, issue of Nature Materials, could have implications for the next generation of electronic devices, which will involve increasingly smaller components.

As devices shrink, the proportion of surface area grows in comparison to the material's volume. Therefore, it's important to understand the characteristics of a material's surface in order to predict how those materials behave and how electrons will travel across an interface, said Brookhaven physicist John Hill.

Hill and his fellow researchers were particularly interested in how the outer electrons of atoms in a so-called manganite material are arranged. Manganites - consisting of a rare-earth element such as lanthanum combined with manganese and oxygen - show a huge change in electrical resistance when a magnetic field is applied. Taking advantage of this "colossal magnetoresistance effect" could be the key to developing advanced magnetic memory devices, magnetic field sensors, or transistors.

The research team, which also includes scientists from KEK (Japan), CNRS (France), Ames Laboratory, and Argonne National Laboratory, used x-ray scattering at Brookhaven's National Synchrotron Light Source and Argonne's Advanced Photon Source to study the orbital order - the arrangement of electrons in the outermost shell - of the material at the surface and in its bulk.

"When you cool down the bulk material to a particular temperature, all the orbitals arrange themselves in a very particular pattern," Hill said. "The question is, does the same thing happen at the surface? And if not, how is it different?"

The authors found that at the surface, the orbital order is more disordered than in the bulk material. And, even though the manganite's crystal surface is atomically smooth, the orbital surface is rough. These characteristics could affect the way electrons are transferred across a material's surface and provide fundamental information for future research and development. Next, the researchers plan to look for this surface orbital "roughness" in other materials and test its effect on magnetism.

Source: Brookhaven National Laboratory, by Kendra Snyder

Explore further: Online Icicle Atlas offers jackpot of scientific data

add to favorites email to friend print save as pdf

Related Stories

Seafloor holds 15 million years of monsoon history

Mar 02, 2015

When the research vessel JOIDES Resolution returned to port in late January after a two-month cruise, it had harvested more than 550 sediment cores from deep beneath the Indian Ocean. Locked within those ...

What is Mars made of?

Feb 26, 2015

For thousands of years, human beings have stared up at the sky and wondered about the Red Planet. Easily seen from Earth with the naked eye, ancient astronomers have charted its course across the heavens ...

Why can't we design the perfect spacesuit?

Feb 19, 2015

So far, every spacesuit humans have utilized has been designed with a specific mission and purpose in mind. As of yet, there's been no universal or "perfect" spacesuit that would fit every need. For example, ...

Recommended for you

Unified theory for skyrmion-materials

Mar 03, 2015

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Why seashells' mineral forms differently in seawater

Mar 03, 2015

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.