'Wiring up' enzymes for producing hydrogen in fuel cells

Nov 19, 2007
'Wiring up' enzymes for producing hydrogen in fuel cells
Computer graphic representation of a single-walled carbon nanotube (elongated structure) Credit: Courtesy of Michael J. Heben, National Renewable Energy Laboratory

Researchers in Colorado are reporting the first successful “wiring up” of hydrogenase enzymes. Those much-heralded proteins are envisioned as stars in a future hydrogen economy where they may serve as catalysts for hydrogen production and oxidation in fuel cells. Their report, describing a successful electrical connection between a carbon nanotube and hydrogenase, is scheduled for the Nov. issue of Nano Letters.

In the new study, Michael J. Heben, Paul W. King, and colleagues explain that bacterial enzymes called hydrogenases show promise as powerful catalysts for using hydrogen in fuel cells, which can produce electricity with virtually no pollution for motor vehicles, portable electronics, and other devices.

However, scientists report difficulty incorporating these enzymes into electrical devices because the enzymes do not form good electrical connections with fuel cell components. Currently, precious metals, such as platinum, are typically needed to perform this catalysis.

The researchers combined hydrogenase enzymes with carbon nanotubes, submicroscopic strands of pure carbon that are excellent electrical conductors. In laboratory studies, the researchers demonstrated that a good electrical connection was established using photoluminescence spectroscopy measurements.

These new “biohybrid” conjugates could reduce the cost of fuel cells by reducing or eliminating the need for platinum and other costly metal components, they say.

Source: American Chemical Society

Explore further: Microfluidics and nanofluidics research provide inexpensive ways to analyze blood and filter water (w/ Video)

add to favorites email to friend print save as pdf

Related Stories

Mastering chemical recipes to make new materials

May 09, 2014

Mircea Dincă playfully describes his very serious work making new materials in MIT's Department of Chemistry much like being a kid mixing and matching Legos. A self-described molecular engineer, Dincă assembles ...

New energy source for future medical implants: sugar

Jun 13, 2012

MIT engineers have developed a fuel cell that runs on the same sugar that powers human cells: glucose. This glucose fuel cell could be used to drive highly efficient brain implants of the future, which ...

New study outlines 'water world' theory of life's origins

Apr 16, 2014

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Recommended for you

An anti-glare, anti-reflective display for mobile devices?

Jul 16, 2014

If you've ever tried to watch a video on a tablet on a sunny day, you know you have to tilt it at just the right angle to get rid of glare or invest in a special filter. But now scientists are reporting in the journal ACS Ap ...

User comments : 0