'Wiring up' enzymes for producing hydrogen in fuel cells

Nov 19, 2007
'Wiring up' enzymes for producing hydrogen in fuel cells
Computer graphic representation of a single-walled carbon nanotube (elongated structure) Credit: Courtesy of Michael J. Heben, National Renewable Energy Laboratory

Researchers in Colorado are reporting the first successful “wiring up” of hydrogenase enzymes. Those much-heralded proteins are envisioned as stars in a future hydrogen economy where they may serve as catalysts for hydrogen production and oxidation in fuel cells. Their report, describing a successful electrical connection between a carbon nanotube and hydrogenase, is scheduled for the Nov. issue of Nano Letters.

In the new study, Michael J. Heben, Paul W. King, and colleagues explain that bacterial enzymes called hydrogenases show promise as powerful catalysts for using hydrogen in fuel cells, which can produce electricity with virtually no pollution for motor vehicles, portable electronics, and other devices.

However, scientists report difficulty incorporating these enzymes into electrical devices because the enzymes do not form good electrical connections with fuel cell components. Currently, precious metals, such as platinum, are typically needed to perform this catalysis.

The researchers combined hydrogenase enzymes with carbon nanotubes, submicroscopic strands of pure carbon that are excellent electrical conductors. In laboratory studies, the researchers demonstrated that a good electrical connection was established using photoluminescence spectroscopy measurements.

These new “biohybrid” conjugates could reduce the cost of fuel cells by reducing or eliminating the need for platinum and other costly metal components, they say.

Source: American Chemical Society

Explore further: Using solar energy to turn raw materials into ingredients for everyday life

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

Aug 21, 2014

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

New energy source for future medical implants: sugar

Jun 13, 2012

MIT engineers have developed a fuel cell that runs on the same sugar that powers human cells: glucose. This glucose fuel cell could be used to drive highly efficient brain implants of the future, which ...

Mastering chemical recipes to make new materials

May 09, 2014

Mircea Dincă playfully describes his very serious work making new materials in MIT's Department of Chemistry much like being a kid mixing and matching Legos. A self-described molecular engineer, Dincă assembles ...

Recommended for you

Twisted graphene chills out

23 hours ago

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

23 hours ago

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 0