Shaping the future -- from sleep to air travel

Nov 01, 2007
Shaping the future -- from sleep to air travel
CHISMACOMB, (CHIral SMArt honeyCOMB)

Imagine airplane wings that can change shape in mid-air or a material that can curve, bulge or twist without the need for expensive and heavy motors or hydraulics. Imagine a material that gets thicker when stretched, unlike conventional materials that get thinner – a substance that could be used in anything from a mattress to an airplane. The implications are enormous.

Now, thanks to a new European Union-funded project CHISMACOMB (CHIral SMArt honeyCOMB), led by University of Bristol researchers, this innovative new technology is set to make this a reality.

The project has developed an auxetic, honeycomb-structure material which becomes thicker when stretched, allowing greater flexibility without compromising strength.

The technology can be used in sandwich structures, whereby the material is inserted between layers of another material such as carbon fibre. These sandwich structures are widely used in the civil, naval and aerospace construction, and in industries using electromagnetic shields.

The University has also applied the technology to aircraft wing design where promising results have shown that the wings may bend, twist, shrink and expand to continuously optimise their aerodynamic properties during flight, resulting in lower noise and potentially much lower carbon emissions.

These radical new materials are also giving marine designers the step change needed to improve the sandwich structures in mine-hunting ships, and in the decks and joints of pleasure boats.

Dr Fabrizio Scarpa, project leader and Reader in Engineering in the Department of Aerospace Engineering at the University, said: “These materials offer exciting new possibilities and change the nature of how composite materials, in particular carbon fibre cellular structures, can be used to gain even greater advantages from them.”

Source: University of Bristol

Explore further: Three-dimensional metamaterials with a natural bent

add to favorites email to friend print save as pdf

Related Stories

New radio telescope ready to probe

14 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

How large-scale technology projects affect knowledge

13 hours ago

What do an accelerator complex at Cern, a manufacturing center in 19th century Philadelphia and lotus cultivation during the Qing dynasty all have in common? All such activities generate knowledge and know-how. ...

Recommended for you

Three-dimensional metamaterials with a natural bent

19 hours ago

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Wild molecular interactions in a new hydrogen mixture

Oct 20, 2014

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

User comments : 0