APL mineral-mapper has key role in selecting next Mars rover landing site

Oct 20, 2007

When NASA Mars Program officials and members of the Mars science community gather in California next week to pare down the list of candidate landing sites for the 2009 Mars Science Laboratory (MSL), they can refer to 125 new images from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM).

Built and operated by the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., CRISM is one of six science instruments on NASA’s Mars Reconnaissance Orbiter, currently circling the planet.

“Since MSL will assess whether Mars ever had an environment capable of supporting life, it will have to land in an area with a mineral record indicative of past water,” says Dr. Scott Murchie, CRISM principal investigator from APL. “CRISM is critical to the selection process because it is the only instrument on MRO with the spectral power to ‘see’ the chemical makeup of the rocks.”

One of CRISM’s main mission objectives is to find and investigate areas that were wet long enough to leave a mineral signature. Offering greater capability to map spectral variations than any similar instrument sent to another planet, CRISM can read 544 “colors” of reflected sunlight to detect minerals in the surface.

The imaging spectrometer is among MRO’s cadre of advanced sensors studying Mars in unprecedented detail and contributing to the MSL landing site selection effort. This includes correlating CRISM’s spectral data with high-resolution pictures of boulders, craters, sediment layers and other surface features acquired by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). “CRISM images provide the scientific criteria that will allow the MSL team to narrow its choices,” Murchie says. “By combining data from the MRO instruments, we can create a complete picture of the Martian surface.”

The CRISM data release consists of user-friendly, color-coded, thematic images. Different versions of each image show clays, sulfates, and unaltered minerals that help tell the story of past water and volcanic processes on Mars. The set also includes infrared images of surface brightness and enhanced visible-color composites. Each image covers a square area roughly 6 miles (10 kilometers) on a side, with a spatial resolution of approximately 66 feet (20 meters) per pixel.

“The data products that we have generated for all the proposed MSL landing sites are scaled in a similar manner. This should make it easy for scientists and the public alike to distinguish between landing sites that possess a wide range of rock types, from ones that do not,” says APL’s Dr. Olivier Barnouin-Jha, who with Dr. Frank Seelos (also of APL) assembled the products in this release. “Going to a location with greater rock diversity will ensure that MSL significantly enhances our understanding of the geological history of Mars, including the history of water."

The images and accompanying analysis products are available on the CRISM Web site at crism.jhuapl.edu/msl_landing_sites/.

Source: Johns Hopkins University

Explore further: NASA deep-space rocket, SLS, to launch in 2018

add to favorites email to friend print save as pdf

Related Stories

First color image of Curiosity's tracks from orbit

Feb 01, 2013

As Curiosity prepares for the historic first drilling operation on Mars, the HiRISE camera aboard the Mars Reconnaissance Orbiter captured an image of it from 271 km (169 miles) up, along with twin lines ...

Gale crater reported front-runner for MSL landing site

Jun 24, 2011

A 150-kilometer-wide hollow on Mars named Gale Crater has emerged as the front-runner for the potential landing site for the Mars Science Laboratory rover, Curiosity, which will head to Mars this fall. Nature ...

Vast areas of low latitude subsurface ice found on Mars

Mar 09, 2011

There could be more subsurface ice on Mars than previously thought, and vast stretches of it may lie just south of the equator. Indeed, one of the proposed landing sites for the Mars Science Laboratory could ...

Recommended for you

Light of life

17 hours ago

A fluorescent microscopic view of cells from a type of bone cancer, being studied for a future trip to deep space – aiming to sharpen our understanding of the hazardous radiation prevailing out there.

Local model better describes lunar gravity

22 hours ago

Two satellites orbiting the Moon as a part of NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission have been mapping its inner structure by measuring subtle shifts in the pull of gravity on the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (1) Dec 06, 2007
20m. is poor resolution. Martian blueberries are millimeters.