Compression of metallic glasses sheds light on phase transitions

Oct 12, 2007

Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified an unusual variation in the compressibility of an unusual class of metals in research that may shed light on the electrodynamics of amorphous materials.

Using high-energy X-rays produced by Argonne's Advanced Photon Source (APS), researchers from Argonne, the Carnegie Institution of Washington and the International Center for New-Structured Materials at Zhejiang University discovered an unusual change in the bulk modulus of lanthanum/cerium-based bulk metallic glasses at a pressure of about 14 GPa, more than 100,000 times the pressure of Earth's atmosphere.

The bulk modulus of an object denotes how much its volume shrinks as the surrounding pressure increases; at pressures above 14 GPa, the samples began to shrink at slower rates than they had at pressures below the break.

This sudden change in compressibility may indicate the occurrence of an "amorphous-to-amorphous" phase transition in these types of materials. Amorphous solids, of which metallic glasses are one example, have long confounded scientists who seek to characterize them. Unlike crystalline solids, which possess a regular long-range atomic order, amorphous materials consist of atoms arranged rather randomly with only short-range order, making their behavior much harder to predict, said Argonne physicist Yang Ren, who worked on the project.

"It's very difficult to get an amorphous form for metals – they love to crystallize," said Guoyin Shen , another physicist on the project. "Just being able to synthesize a metallic glass larger than 10 millimeters is an accomplishment."

While scientists have an easy time detecting amorphous-to-crystalline phase transitions, like water freezing into ice, the natural disorder of the atomic structure of metallic glasses had precluded them from seeing amorphous-to-amorphous transitions until very recently.

Even those physicists who believe that they have observed an amorphous-to-amorphous transition have not yet explained the mechanisms that underlie the transformation, Ren explained. "We know quite a bit about phase transitions in crystalline materials, but for amorphous material it gets quite complicated. You have to ask, 'just how do you define a phase?'"

In order to answer this question and to explain the bulk modulus discontinuity, the researchers looked for the cause on the atomic level. Even if they are not visible to the naked eye, pressure-induced phase transitions in amorphous materials at high pressure often produce a change in the number of atoms that surround the central atom, known as the atom's coordination number.

However, the experiments at the High-Pressure Collaborative Access Team (HPCAT) APS beamline showed that no coordination change had occurred, leaving the research team with one other plausible explanation: the pressure engendered a sudden reconfiguration of the electrons that surround each atom in the material. "For decades," Shen said, "people have been able to study the long-range order in materials at high pressures, but we have now begun to study short-range order as well."

"If this kink is caused by electron reconfiguration," he said, "we can come up with a recipe that makes use of that type of change in the next phase of the research. This discovery is significant because it provides us with important information about how to work with a poorly understood, but widely used, class of materials."

Applications of bulk metallic glasses include recording heads, sensors and transducers, motors, sports equipment and power transformer cores. In general, the superior fracture strength and toughness, the excellent corrosion and wear resistance, and improved plasticity of bulk metallic glasses may lead to more applications in structural materials, electronic products, medical, defense and security systems in the future. The lanthanum/cerium-based metallic glass, due to its superplastic behavior at low temperatures, could be used for stamps, Shen said.

Results of the research, which was funded by DOE Office of Basic Energy Sciences, were published in the August 21 issue of the Proceedings of the National Academy of Sciences.

Source: Argonne National Laboratory

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Scientists probe the next generation of 2-D materials

Apr 03, 2014

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that ...

Nanosheets and nanowires

Apr 01, 2014

Researchers in China, have found a convenient way to selectively prepare germanium sulfide nanostructures, including nanosheets and nanowires, that are more active than their bulk counterparts and could open ...

Recommended for you

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...