Supernovae not what they used to be

Oct 05, 2007

Exploding stars that light the way for research on dark energy aren’t as powerful or bright, on average, as they once were, says a new study by University of Toronto astronomers.

The study, which compared supernovae in nearby galaxies with those that exploded up to nine billion light years away in the distant universe, found the distant supernovae were an average of 12 per cent brighter. The distant supernovae were brighter because they were younger, the study found.

Since uniformly bright exploding stars help astronomers study the nature of dark energy – an unknown type of energy that causes the universe to accelerate its expansion – the team’s findings suggest it could become more difficult to study dark energy in the future. Astronomers can correct for supernovae of varying brightness, but it will prove challenging.

“The findings do not call into question that the universe is accelerating but the evolving mix of supernovae could limit future attempts to determine the nature of dark energy,” said Andrew Howell, lead author of the study and post-doctoral researcher. The paper appears in the Sept. 20 issue of the Astrophysical Journal Letters.

“You can think of supernovae as light bulbs,” he said. “We found that the early universe supernovae had a higher wattage, but as long as we can figure out the wattage, we should be able to correct for that. Learning more about dark energy is going to take very precise corrections though and we aren’t sure how well we can do that yet.”

The paper, Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift, was co-authored by post-doctoral researchers Mark Sullivan and Alex Conley and Professor Ray Carlberg of astronomy and astrophysics.

Source: University of Toronto

Explore further: An unprecedented view of two hundred galaxies of the local universe

add to favorites email to friend print save as pdf

Related Stories

Evidence of a local hot bubble carved by a supernova

Jul 30, 2014

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

Production phase for LSST camera sensors nears

Jul 21, 2014

(Phys.org) —A single sensor for the world's largest digital camera detected light making its way through wind, air turbulence, and Earth's atmosphere, successfully converting the light into a glimpse of ...

Recommended for you

The origins of local planetary orbits

23 hours ago

A plutino is an asteroid-sized body that orbits the Sun in a 2:3 resonance with Neptune. They are named after Pluto, which also orbits the Sun twice for every three orbits of Neptune. It is thought that Pluto ...

Wild ducks take flight in open cluster

Oct 01, 2014

The Wide Field Imager on the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory in Chile has taken this beautiful image, dappled with blue stars, of one of the most star-rich open clusters currently ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

seanpu
1.5 / 5 (2) Oct 08, 2007
they are said to be "12 per cent brighter" because of the assumption that red-shift = distance. take away the assumption and their brightness levels will fall to within "expected" values.
LearmSceince
4 / 5 (2) Oct 12, 2007
That doesn't make sense. If you take away that assumption, then you can't make any predictions so there are no "expected" values to fall within.