Supernovae not what they used to be

Oct 05, 2007

Exploding stars that light the way for research on dark energy aren’t as powerful or bright, on average, as they once were, says a new study by University of Toronto astronomers.

The study, which compared supernovae in nearby galaxies with those that exploded up to nine billion light years away in the distant universe, found the distant supernovae were an average of 12 per cent brighter. The distant supernovae were brighter because they were younger, the study found.

Since uniformly bright exploding stars help astronomers study the nature of dark energy – an unknown type of energy that causes the universe to accelerate its expansion – the team’s findings suggest it could become more difficult to study dark energy in the future. Astronomers can correct for supernovae of varying brightness, but it will prove challenging.

“The findings do not call into question that the universe is accelerating but the evolving mix of supernovae could limit future attempts to determine the nature of dark energy,” said Andrew Howell, lead author of the study and post-doctoral researcher. The paper appears in the Sept. 20 issue of the Astrophysical Journal Letters.

“You can think of supernovae as light bulbs,” he said. “We found that the early universe supernovae had a higher wattage, but as long as we can figure out the wattage, we should be able to correct for that. Learning more about dark energy is going to take very precise corrections though and we aren’t sure how well we can do that yet.”

The paper, Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift, was co-authored by post-doctoral researchers Mark Sullivan and Alex Conley and Professor Ray Carlberg of astronomy and astrophysics.

Source: University of Toronto

Explore further: Water could have been abundant in the first billion years

Related Stories

Enormous hole in the universe may not be the only one

Apr 22, 2015

Astronomers have found evidence of a giant void that could be the largest known structure in the universe. The "supervoid" solves a controversial cosmic puzzle: it explains the origin of a large and anomalou ...

Accelerating universe? Not so fast

Apr 10, 2015

A University of Arizona-led team of astronomers found that the type of supernovae commonly used to measure distances in the universe fall into distinct populations not recognized before; the findings have ...

The dark side of cosmology

Mar 06, 2015

It's a beautiful theory: the standard model of cosmology describes the universe using just six parameters. But it is also strange. The model predicts that dark matter and dark energy – two mysterious entities ...

Recommended for you

Brian Schmidt discusses the fast-firing universe

5 hours ago

In 1998, a team led by a former Harvard graduate student shocked the astrophysics world by publishing results that said the expansion of the universe, believed to be gradually slowing, was instead accelerating.

Birth of a radio phoenix

7 hours ago

Abell 1033 is a cluster of over 350 galaxies located about 1.7 billion light-years away. Collisions between galaxies in clusters are common events, and each merger heats and shocks the nearby gas. The rapidly ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

seanpu
1.5 / 5 (2) Oct 08, 2007
they are said to be "12 per cent brighter" because of the assumption that red-shift = distance. take away the assumption and their brightness levels will fall to within "expected" values.
LearmSceince
4 / 5 (2) Oct 12, 2007
That doesn't make sense. If you take away that assumption, then you can't make any predictions so there are no "expected" values to fall within.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.