Running shipwreck simulations backwards helps identify dangerous waves

Oct 01, 2007

Big waves in fierce storms have long been the focus of ship designers in simulations testing new vessels.

But a new computer program and method of analysis by University of Michigan researchers makes it easy to see that a series of smaller waves---a situation much more likely to occur---could be just as dangerous.

"Like the Edmund Fitzgerald that sank in Michigan in 1975, many of the casualties that happen occur in circumstances that aren't completely understood, and therefore they are difficult to design for," said Armin Troesch, professor of naval architecture and marine engineering. "This analysis method and program gives ship designers a clearer picture of what they're up against."

Troesch and doctoral candidate Laura Alford will present a paper on their findings Oct. 2 at the International Symposium on Practical Design of Ships and Other Floating Structures, also known as PRADS 2007.

Today's ship design computer modeling programs are a lot like real life, in that they go from cause to effect. A scientist tells the computer what type of environmental conditions to simulate, asking, in essence, "What would waves like this do to this ship"" The computer answers with how the boat is likely to perform.

Alford and Troesch's method goes backwards, from effect to cause. To use their program, a scientist enters a particular ship response, perhaps the worst case scenario. The question this time is more like, "What are the possible wave configurations that could make this ship experience the worst case scenario"" The computer answers with a list of water conditions.

What struck the researchers when they performed their analysis was that quite often, the biggest ship response is not caused by the biggest waves. Wave height is only one contributing factor. Others are wave grouping, wave period (the amount of time between wave crests), and wave direction.

"In a lot of cases, you could have a rare response, but when we looked at just the wave heights that caused that response, we found they're not so rare," Alford said. "This is about operational conditions and what you can be safely sailing in. The safe wave height might be lower than we thought."

This new method is much faster than current simulations. Computational fluid dynamics modeling in use now works by subjecting the virtual ship to random waves. This method is extremely computationally intensive and a ship designer would have to go through months of data to pinpoint the worst case scenario.

Alford and Troesch's program and method of analysis takes about an hour. And it gives multiple possible wave configurations that could have statistically caused the end result.

There's an outcry in the shipping industry for advanced ship concepts, including designs with more than one hull, Troesch said. But because ships are so large and expensive to build, prototypes are uncommon. This new method is meant to be used in the early stages of design to rule out problematic architectures. And it is expected to help spur innovation.

A majority of international goods are still transported by ship, Troesch said.

The paper is called "A Methodology for Creating Design Ship Responses."

Source: University of Michigan

Explore further: Avatars make the Internet sign to deaf people

add to favorites email to friend print save as pdf

Related Stories

Animals first flex their muscles

4 hours ago

An unusual new fossil discovery of one of the earliest animals on earth may also provide the oldest evidence of muscle tissue – the bundles of cells that make movement in animals possible.

Introducing the multi-tasking nanoparticle

7 hours ago

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Eta Carinae: Our Neighboring Superstars

8 hours ago

(Phys.org) —The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the Sun, it ...

Recommended for you

Avatars make the Internet sign to deaf people

Aug 29, 2014

It is challenging for deaf people to learn a sound-based language, since they are physically not able to hear those sounds. Hence, most of them struggle with written language as well as with text reading ...

Chameleon: Cloud computing for computer science

Aug 26, 2014

Cloud computing has changed the way we work, the way we communicate online, even the way we relax at night with a movie. But even as "the cloud" starts to cross over into popular parlance, the full potential ...

User comments : 0