Researchers set new record for brightness of quantum dots

Sep 25, 2007

By placing quantum dots on a specially designed photonic crystal, researchers at the University of Illinois have demonstrated enhanced fluorescence intensity by a factor of up to 108. Potential applications include high-brightness light-emitting diodes, optical switches and personalized, high-sensitivity biosensors.

“We are using photonic crystals in a new way,” said Brian Cunningham, a professor of electrical and computer engineering and corresponding author of a paper published in the August issue of the journal Nature Nanotechnology. “We tune them to the specific wavelength of a laser used to stimulate the quantum dots, which couples the energy more efficiently and increases the brightness.”

A quantum dot is a tiny piece of semiconductor material 2 to 10 nanometers in diameter (a nanometer is 1 billionth of a meter). When illuminated with invisible ultraviolet light, a quantum dot will fluoresce with visible light.

To enhance the fluorescence, Cunningham and colleagues at the U. of I. begin by creating plastic sheets of photonic crystal using a technique called replica molding. Then they fasten commercially available quantum dots to the surface of the plastic.

“We designed the photonic crystal to efficiently capture the light from an ultraviolet laser and to concentrate its intensity right within the surface where the quantum dots are located,” said Cunningham, who also is affiliated with the university’s Beckman Institute, the Micro and Nanotechnology Laboratory, and the Institute for Genomic Biology. “Enhanced absorption by the quantum dots is the first improvement we made.”

Enhanced, directed emission from the quantum dots is the second improvement.

Quantum dots normally give off light in all directions. However, because the researchers’ quantum dots are sitting on a photonic crystal, the energy can be channeled in a preferred direction – toward a detector, for example.

While the researchers report an enhancement of fluorescence intensity by a factor of up to 108 compared with quantum dots on an unpatterned surface, more recent (unpublished) work has exceeded a factor of 550.

“The enhanced brightness makes it feasible to use photonic crystals and quantum dots in biosensing applications from detecting DNA and other biomolecules, to detecting cancer cells, spores and viruses,” Cunningham said. “More exotic applications, such as personalized medicine based on an individual’s genetic profile, may also be possible.”

Source: University of Illinois at Urbana-Champaign

Explore further: Study sheds new light on why batteries go bad

add to favorites email to friend print save as pdf

Related Stories

Addressing the weak optical absorption of graphene

Sep 10, 2014

Graphene-based photodetectors have attracted strong interest because of their exceptional physical properties, which include an ultra-fast response across a broad spectrum, a strong electron–electron interaction ...

Alcohol clouds in space

Sep 09, 2014

Yes, there is a giant cloud of alcohol in outer space. It's in a region known as W3(OH), only about 6500 light years away. Unfortunately it is methyl alcohol (commonly known as wood alcohol, though this stuff ...

Breakthrough in light sources for new quantum technology

Aug 29, 2014

One of the most promising technologies for future quantum circuits are photonic circuits, i.e. circuits based on light (photons) instead of electrons (electronic circuits). First, it is necessary to create ...

Recommended for you

For electronics beyond silicon, a new contender emerges

20 minutes ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

2 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

2 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0