Scientists Develop Micro Device, Nano-Engineered Materials to Treat Cancer and HIV

Sep 18, 2007

Using nanotechnology, engineering researchers at the University of Missouri-Columbia have developed a small but powerful device capable of enhancing the delivery of drugs to treat life-threatening illnesses.

Classified as an advanced drug delivery system, the state-of-the art device has numerous capabilities for destroying tumors, kidney stones and ulcers, and treating cancer and HIV. Nanotechnology works with microscopic particles that are about one millionth the size of a strand of hair. At one cubic inch in size - comparable to four kernels of popcorn - Mizzou's device, which is now in the testing phase, is far smaller than similar delivery systems that have been designed by other researchers.

The development effort was led by Shubhra Gangopadhyay, an electrical and computer engineering professor in the College of Engineering and head of the University's International Center for Nano/Micro Systems and Nanotechnology.

Similar to other nano/micro-scale devices by Gangopadhyay, this one also operates on a "dual-use" platform, which powers alternative energy and munitions systems for the U.S. military. By incorporating microchip-based technology with nanotechnology, Gangopadhyay fuses both technologies to trigger a reaction resulting in supersonic shockwaves. For medical purposes, those shockwaves, along with nanoparticles, propagate into the body to make infected cells permeable for drug interaction. The device allows for a non-invasive procedure that utilizes the body's pores as entry points.

Other usages include:

- The dispersing of drug-carrying nanoparticles, referred to as nanosponge, into the body. Such sponges can target specific cells and areas that have been affected by disease.

- The delivery of gold nanoparticles, a florescent material, into the body. By attaching to infected cells, the unique particles can allow doctors to track drug movement and the spread of disease throughout the body.

Gangopadhyay's collaborators are Steve Apperson, a doctoral student; Andrey Bezmelnitsyn and Raj Thiruvengadathan, both post-doctoral research associates in electrical and computer engineering; Dan Tappmeyer, an undergraduate chemical engineering major; and Keshab Gangopadhyay, research professor of electrical and computer engineering. The team of engineers is working with Luis Polo-Parada, assistant professor of pharmacology and physiology, at the Dalton Cardiovascular Research Center for testing.

Apperson said MU's nanoparticles contain no harmful components and aren't hazardous to the body. He said the device will require as many as three more years of testing before it's made available to pharmaceutical companies. Nems/Mems Works, LLC will market the device and various nanoparticles associated with the research. The company is owned by the Gangopadhyays, Apperson and Martin Walker, who is director of administrative services in the college.

Source: University of Missouri

Explore further: Experts cautious over Google nanoparticle project

add to favorites email to friend print save as pdf

Related Stories

Quantum effects in nanometer-scale metallic structures

Oct 22, 2014

Plasmonic devices combine the 'super speed' of optics with the 'super small' of microelectronics. These devices exhibit quantum effects and show promise as possible ultrafast circuit elements, but current ...

Novel approach to magnetic measurements atom-by-atom

Oct 01, 2014

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Nanoparticles accumulate quickly in wetland sediment

Oct 01, 2014

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

Recommended for you

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

New nanodevice to improve cancer treatment monitoring

Oct 27, 2014

In less than a minute, a miniature device developed at the University of Montreal can measure a patient's blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten ...

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.