New Viewing Technique Bolsters Case For Life On Mars

Feb 14, 2006

New examinations of a Martian meteorite found nearly a century ago have strengthened the possibility that the red planet once harbored life.

"I don't understand the sample completely just yet, but it's exciting," research team member Kathie Thomas-Keprta told SpaceDaily.com.

The sample in question is from a meteorite named Nakhla, which was found in the Egyptian desert in 1911, and which has been held since by the Natural History Museum in London. A new examination of Nakhla has produced a very strong indication that it might have been imbedded with organic carbon - an absolute necessity for life - that did not originate on Earth.

Keprta, a specialist in microscopy techniques and a contractor for NASA at the Johnson Space Center, said she and colleagues recently obtained pristine samples of the rock -which is thought to be 1.3 billion years old - to probe its structure using the latest optical examination techniques.

"We have known for a long time about its carbon content via chemical analysis," she explained, "but up to now no one has been able to locate it."

The team took a tiny, polished piece of the meteorite only 30 micrometers thick that was sealed in epoxy and applied a technique called focused-ion-beam microscopy, or FIB, to carve out a small rectangle from the sample, and another technique called transmission electron microscopy, or TEM, to identify the deposits of carbonaceous material.

"For the first time, we can find the exact area" on Nakhla that harbors the carbon," Thomas-Keprta said. Further analysis by secondary ion mass spectroscopy, or SIMS, identified the sample as composed of carbon 13, which she said could only have come from an extraterrestrial source, not from any earthbound contamination.

All life on Earth contains some quantity of the isotope carbon 14, but no carbon 13.

The deposits, which Thomas-Keprta described as "shrubby," resemble similar structures on Earth created by the actions of ancient microorganisms that lived within volcanic rocks on the ocean floor.

Thomas-Keprta and colleagues will present their findings next month at the Lunar and Planetary Science Conference in Houston. The team includes scientists who also presented evidence for microbial life in another Martian meteorite - ALH84001, which was found in Antarctica - in 1998.

All Martian meteorites are thought to have been ejected from the red planet's surface during ancient impacts. The meteorites drifted in interplanetary space until captured by Earth's gravity and dragged down to the surface.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Some potentially habitable planets began as gaseous, Neptune-like worlds

add to favorites email to friend print save as pdf

Related Stories

Robot cameras monitor deep sea ecosystems

Jan 12, 2015

Scientists at the National Oceanography Centre (NOC) have used advanced photographic tools in an unmanned Autonomous Underwater Vehicle (AUV) to make major advancements in estimating deep-sea ecosystem diversity ...

Barren deserts can host complex ecosystems in their soils

Dec 22, 2014

"Biological soil crusts" don't look like much. In fact, people often trample right over these dark, or green-tinted, sometimes raised patches in the desert soil. But these scruffy stretches can house delicate ...

Recommended for you

NASA engineer advances new daytime star tracker

8 hours ago

Scientists who use high-altitude scientific balloons have high hopes for their instruments in the future. Although the floating behemoths that carry their instruments far into the stratosphere can stay aloft ...

Image: Sounding rockets launch into an aurora

8 hours ago

The interaction of solar winds and Earth's atmosphere produces northern lights, or auroras, that dance across the night sky and mesmerize the casual observer. However, to scientists this interaction is more ...

Gully patterns document Martian climate cycles

8 hours ago

Geologists from Brown University have found new evidence that glacier-like ice deposits advanced and retreated multiple times in the midlatitude regions of Mars in the relatively recent past.

Europe to resume satnav launches in March: Arianespace

9 hours ago

Europe in March will resume satellite launches for its troubled Galileo navigation system, hoping to boost by at least six the number of orbiters this year, Arianespace and the European Commission said Wednesday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.