Molecules autonomously propelled by polymerizing DNA strands

Sep 06, 2007 By Lisa Zyga feature
Molecules autonomously propelled by polymerizing DNA strands
This 125 nm x 85 nm rectangular DNA origami (“A”) contains Rickettsia polymerization motors growing from closed-circle sites. Credit: Venkataraman, et al. ©2007 Nature.

Scientists from the California Institute of Technology have fabricated a motor that runs autonomously, and is powered only by the free energy of DNA hybridization. The molecular motor was inspired by bacterial pathogens such as Rickettsia rickettsii that propel themselves through host cells by polymerizing protein “comet tails.” The synthetic mimic operates by polymerizing a double-helical DNA tail out of metastable DNA hairpins (a pattern named for its 180-degree turn).

Representing the Departments of Bioengineering, Computer Science, Computation & Neural Systems, and Applied & Computational Mathematics at Caltech, researchers Suvir Venkataraman and colleagues have published their results in a recent issue of Nature Nanotechnology.

In contrast to previous synthetic molecular motors, the current motor is powered by non-covalent interactions and operates freely in solution without a substrate.

“Propulsive locomotion is achieved by harnessing a hybridization chain reaction (HCR), in which metastable DNA hairpins polymerize upon encountering a target molecule,” coauthor Niles Pierce told PhysOrg.com. “Strikingly, the propelled DNA strand remains firmly in contact with the growing polymer while performing successive handshakes with inserting hairpins.”

In geometric mimicry of Rickettsia’s comet tail, the researchers used atomic force microscopy to demonstrate patterned polymerization on one side of a rectangular DNA origami (a method of constructing nanoscale objects recently invented by coauthor Paul Rothemund). The researchers do not yet know whether the polymerization of nanoscale nucleic acid monomers can propel microscale objects freely through solution in more complete functional mimicry of Rickettsia.

“This study provides a proof of principle that DNA hybridization can be used to power autonomous molecular locomotion,” said Pierce. “Researchers at the NSF Center for Molecular Cybernetics, of which our team is a part, are now working to develop logical walkers that can work cooperatively and respond to their environment. It is possible that synthetic molecular motors may one day be routinely used in medicine, basic research, and manufacturing.”

Citation: Venkataraman, Suvir, Dirks, Robert M., Rothemund, Paul W. K., Winfree, Erik, and Pierce, Niles A. “An autonomous polymerization motor powered by DNA hybridization.” Nature Nanotechnology, Vol, 2, August 2007, 490-494.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: 'NanoSuit': Researchers use nano-coating to allow for electron microscopy of living insects

add to favorites email to friend print save as pdf

Related Stories

A contractile gel that stores light energy

Jan 20, 2015

Living systems have the ability to produce collective molecular motions that have an effect at the macroscale, such as a muscle that contracts via the concerted action of protein motors. In order to reproduce ...

Snakes in evolutionary arms race with poisonous newt

Nov 17, 2014

The rough-skinned newt is easily one of the most toxic animals on the planet, yet the common garter snake routinely eats it. How does a newt which produces enough toxin to kill several grown humans almost ...

Relaxation helps pack DNA into a virus

May 26, 2014

Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

14 hours ago

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Engineering self-assembling amyloid fibers

Jan 26, 2015

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.