Molecules autonomously propelled by polymerizing DNA strands

Sep 06, 2007 By Lisa Zyga feature
Molecules autonomously propelled by polymerizing DNA strands
This 125 nm x 85 nm rectangular DNA origami (“A”) contains Rickettsia polymerization motors growing from closed-circle sites. Credit: Venkataraman, et al. ©2007 Nature.

Scientists from the California Institute of Technology have fabricated a motor that runs autonomously, and is powered only by the free energy of DNA hybridization. The molecular motor was inspired by bacterial pathogens such as Rickettsia rickettsii that propel themselves through host cells by polymerizing protein “comet tails.” The synthetic mimic operates by polymerizing a double-helical DNA tail out of metastable DNA hairpins (a pattern named for its 180-degree turn).

Representing the Departments of Bioengineering, Computer Science, Computation & Neural Systems, and Applied & Computational Mathematics at Caltech, researchers Suvir Venkataraman and colleagues have published their results in a recent issue of Nature Nanotechnology.

In contrast to previous synthetic molecular motors, the current motor is powered by non-covalent interactions and operates freely in solution without a substrate.

“Propulsive locomotion is achieved by harnessing a hybridization chain reaction (HCR), in which metastable DNA hairpins polymerize upon encountering a target molecule,” coauthor Niles Pierce told PhysOrg.com. “Strikingly, the propelled DNA strand remains firmly in contact with the growing polymer while performing successive handshakes with inserting hairpins.”

In geometric mimicry of Rickettsia’s comet tail, the researchers used atomic force microscopy to demonstrate patterned polymerization on one side of a rectangular DNA origami (a method of constructing nanoscale objects recently invented by coauthor Paul Rothemund). The researchers do not yet know whether the polymerization of nanoscale nucleic acid monomers can propel microscale objects freely through solution in more complete functional mimicry of Rickettsia.

“This study provides a proof of principle that DNA hybridization can be used to power autonomous molecular locomotion,” said Pierce. “Researchers at the NSF Center for Molecular Cybernetics, of which our team is a part, are now working to develop logical walkers that can work cooperatively and respond to their environment. It is possible that synthetic molecular motors may one day be routinely used in medicine, basic research, and manufacturing.”

Citation: Venkataraman, Suvir, Dirks, Robert M., Rothemund, Paul W. K., Winfree, Erik, and Pierce, Niles A. “An autonomous polymerization motor powered by DNA hybridization.” Nature Nanotechnology, Vol, 2, August 2007, 490-494.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Synthetic virus developed to deliver a new generation of medicines

add to favorites email to friend print save as pdf

Related Stories

Relaxation helps pack DNA into a virus

May 26, 2014

Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published ...

Recommended for you

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

User comments : 0