UC Riverside hydrologist to study ecological impact of climate change on mountain lakes

Aug 29, 2007
Pear Lake
Because of extensive bedrock and little soil, Sierra Nevada lakes are very sensitive to changing climate and increased atmospheric fallout of nutrients. Credit: James Sickman, UC Riverside

How does climate change affect the rate of atmospheric deposition of nutrients – elements or compounds essential to the growth and survival of organisms – into mountain lakes? And how do increases in the deposition of such nutrients threaten the lakes’ plant and animal species?

James O. Sickman, an assistant professor of hydrology at UC Riverside, will attempt to answer these questions, thanks to a five-year grant from the National Science Foundation’s program in Long Term Research in Environmental Biology, to be shared by UCR and UC Santa Barbara. The National Park Service is providing additional funding to Sickman for three years.

Fossil fuel combustion by humans has multiple effects, one of which – an increase in greenhouse gas emissions – results in climate change and an increase in atmospheric pollutants such as nitrogen. More available nitrogen, in turn, results in increased atmospheric nitrogen deposition.

As part of the research project, Sickman will measure the phosphorus and nitrogen content of atmospheric deposition in Sequoia National Park in the Sierra Nevada, Calif., to determine how its lakes are responding to climate change.

“We’re interested in understanding how the productivity and ecology of lakes are affected by atmospheric fallout of nutrients,” said Sickman, a faculty member in the Department of Environmental Sciences. “By the end of our project we hope to describe the linkages between lake ecology and both climate change and atmospheric deposition.”

Nutrients can enter lakes as dry deposition (slowly descending nutrient-rich particulate matter) or in rainfall and snowfall. When lakes become enriched in dissolved nutrients, overproduction of algae and phytoplankton can result, altering the entire foodweb of the lake; severe overproduction can deplete dissolved oxygen and endanger aquatic life.

“More productivity is not necessarily a good thing where Sierra Nevada lakes are concerned,” Sickman said. “These lakes are chemically similar to distilled water and exist in granitic basins. Both factors limit the lakes’ ability to adapt to climate change and increasing nutrient deposition. We’re already seeing the chronic effects of excessive nutrients falling into these lakes. In some cases, phytoplankton growth has increased by a factor of three. We plan to do some forensic studies on the atmospheric deposition to determine whether the excess nutrients are being transported from local sources, such as the Central Valley, or remote sources, such as China.”

The combustion of fossil fuels, such as oil and coal, by automobiles, electric utilities, and large industries is the major source of nitrogen in atmospheric deposition. Fertilizer application and production may be sources of atmospheric phosphorus.

Excessive nitrogen can contribute to lake acidification, a reduction in dissolved oxygen, a loss of habitat, and changes in biodiversity. Excessive phosphorus can overfertilize lakes, also resulting in changes in biodiversity.

To get a longer perspective on the nutrient content of lakes in the high Sierra Nevada, Sickman also plans to analyze sediment cores from lakes in Sequoia and Yosemite National Parks to determine past rates of atmospheric deposition. “Paleolimnology, the study of the history of lakes, gives us a longer perspective and will help determine if conditions today differ significantly from those in the past. The major goal of this research is to determine what the critical doses are for nutrient deposition – critical information for regulatory agencies in setting air quality standards.”

Sickman, who joined UCR earlier this year, is the co-principal investigator of the five-year grant. UC Santa Barbara’s John Melack, a professor of ecology, evolution and marine biology, is the principal investigator.

For the first year of funding, the National Science Foundation will provide $84,675 for the study, with nearly 23 percent of this amount assigned to UCR. The National Park Service will provide UCR with $25,000 for the first year of study, with two more years of funding committed to the project.

Source: University of California - Riverside

Explore further: Strong quake hits east Indonesia; no tsunami threat

add to favorites email to friend print save as pdf

Related Stories

The legend of the kamikaze typhoons

Dec 09, 2014

In the late 13th century, Kublai Khan, ruler of the Mongol Empire, launched one of the world's largest armada of its time in an attempt to conquer Japan. Early narratives describe the decimation and dispersal ...

Reconstructing the African humid period

Dec 05, 2014

During the end of the last ice age, there were dramatic changes in rainfall across a vast swath of Africa. As the world's large ice sheets receded in northern and southern latitudes, rainfall in much of Africa ...

The formation and development of desert dunes on Titan

Oct 23, 2014

Combining climate models and observations of the surface of Titan from the Cassini probe, a team from the AIM Astrophysics Laboratory (CNRS / CEA / Paris Diderot University) , in collaboration with researchers ...

Recommended for you

Strong quake hits east Indonesia; no tsunami threat

15 hours ago

A strong earthquake struck off the coast of eastern Indonesia on Sunday evening, but there were no immediate reports of injuries or damage, and authorities said there was no threat of a tsunami.

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.