Rovers begin new observations on changing Martian atmosphere

Aug 29, 2007
Victoria Crater
An orbital view of Victoria Crater on Mars, showing the path of the Opportunity rover along the north rim. Mars rover scientists have launched a new long-term study on the Martian atmosphere with the Alpha Particle X-ray Spectrometer, an instrument that was originally developed at the University of Chicago. This orbital view was acquired by the High-Resolution Imaging Science Experiment camera on the Mars Reconnaissance Orbiter. Credit: Image courtesy of NASA/JPL-Caltech/UofA/USGS

Mars rover scientists have launched a new long-term study on the Martian atmosphere with the Alpha Particle X-ray Spectrometer, an instrument that was originally developed at the University of Chicago.

Thanasis Economou, Senior Scientist at Chicago's Enrico Fermi Institute, suggested the new study after observing that the APXS instruments aboard NASA's twin Mars rovers, Spirit and Opportunity, had recorded fluctuations in the argon composition of the Martian atmosphere. "The amount of argon in the atmosphere is changing constantly," Economou said.

During warmer seasons, approximately 95 percent of the Martian atmosphere consists of carbon dioxide. Nitrogen accounts for almost 3 percent and argon for less than 2 percent. But when winter sets in at one of the poles, carbon dioxide freezes out of the atmosphere to form a polar cap, causing a low-pressure system that moves air toward the pole.

Argon stays in the atmosphere and becomes enhanced because it freezes at a much lower temperature, Economou said. An instrument on NASA's Odyssey orbiter around Mars found that on the Mars south pole during the winter, the argon concentration is six times higher than during the warmer seasons.

"The amount of argon that comes with the air mass stays in the atmosphere," he explained. "Carbon dioxide drops, so the ratio of argon to carbon dioxide is increasing constantly until the next season."

With the onset of warmer spring and summer temperatures, the frozen carbon dioxide evaporates back into the atmosphere, causing a high-pressure system that pushes the air mass back toward the equator.

"The fact that we see a signal at all means there's a lot of mixing between the polar air and the air at the tropics," said Ray Pierrehumbert, the Louis Block Professor in Geophysical Sciences at the University of Chicago, who specializes in the evolution of climate on Earth and Mars. "It gives you a way of inferring aspects of the Martian circulation that you can't observe at all with any other instrument that's out there," he said.

Scientists are coupling the APXS measurements with additional data collected by the orbiting Mars Odyssey spacecraft. The APXS measures the number of argon atoms at the rover's location between the instrument and the ground-a distance of a couple of centimeters (a few inches). Odyssey's gamma-ray spectrometer, meanwhile, measures the argon in a column of air extending from the upper atmosphere to the Martian surface, but over an area spanning several hundred kilometers (a couple hundred miles)

Spirit and Opportunity landed on Mars in January 2004. Until now, their APXS instruments have focused on measuring the chemical content of rocks and dust sitting on the ground. During the mission's first 90 days, for example, Opportunity's APXS contributed to the identification and analysis of abundant sulfate salts and other minerals suggestive of once-moist environments on the vast plain known as Meridiani Planum.

"It means that at some point the site was soaked with liquid water," Economou said.

Opportunity's APXS also performed a key analysis of the first meteorite ever discovered on Mars. When Opportunity encountered Heat Shield rock in 2005, "it looked like a meteorite, but it was confirmed with the APXS," Economou said. It was the first of at least four meteorites that Opportunity has discovered.

"If you go to Antarctica you find lots of them because you can spot them," he said. "On Mars also, when you have these large, flat areas that have just sand and sand dunes, nothing else, and you now see some suspicious rock, you know that it's not from there." Either it is debris that has been ejected from an impact crater, or a meteorite.

In recent months, the APXS on the Spirit rover measured the composition of soils consisting of 90 percent pure silica, which could have formed in a hot-spring environment or some other process involving water. The finding presents some of the best evidence yet that water once existed at Gusev crater.

"This is a remarkable discovery," said Cornell University's Steve Squyres, who heads the Mars rovers' science instruments team. "The fact that we found something this new and different after nearly 1,200 days on Mars makes it even more remarkable. It makes you wonder what else is still out there."

Opportunity now has traveled more than six miles through some difficult sandy terrain to reach Victoria Crater, which measures half a mile in diameter. Rolling up to the edge of the crater, the rover has taken images of the layered sediments, various rock types and accumulations of sand visible at the base of the walls.

NASA engineers have scouted a possible route that Opportunity could safely follow onto the crater floor. A dust storm in the region has delayed plans to send Opportunity into the crater.

Source: University of Chicago

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

Opportunity rover tops 35 kilometers of driving

Sep 03, 2012

Meanwhile, back in Meridiani Planum … the Opportunity rover keeps on trucking, and has now exceeded over 35 kilometers (21.75 miles) of driving on its odometer! Quite an accomplishment for the Energizer ...

Cornell astronomers roving Mars with Curiosity

Aug 13, 2012

(Phys.org) -- In a daring feat of technological nerve and skill, NASA landed a 1-ton rover on the surface of Mars Aug. 6. The rolling laboratory is designed to help answer the question humans most want to ...

NASA rover lands on Mars (Update 4)

Aug 06, 2012

NASA has successfully landed its $2.5 billion Mars Science Laboratory and Curiosity rover on the surface of the Red Planet, breaking new ground in US-led exploration of an alien world.

NASA braces for 'terror' in Mars landing

Aug 02, 2012

The biggest, baddest space rover ever built for exploring an alien planet is nearing its August 6 landing on Mars, and the US space agency is anxious for success despite huge risks.

SAM I am

Dec 06, 2011

The Mars Science Laboratory is on its way to the red planet, and its rover Curiosity should touch down next summer. If the mission hits paydirt and comes across organic material, then one instrument in particular ...

Recommended for you

Mysteries of space dust revealed

21 hours ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

Aug 29, 2014

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

Aug 28, 2014

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 0