On-Chip Silicon 'Microcoolers' for Microprocessor Hot Spots

Aug 24, 2007 By Laura Mgrdichian feature

As semiconductor-based technology has rapidly developed, producing ever smaller and faster silicon-chip computer processors, effectively cooling these chips has remained a problem. Now, researchers have developed a way to cool hot spots using tiny on-chip silicon “microcoolers.”

The research, performed by scientists at the University of Maryland at College Park, is published in the August 2, 2007, online edition of the Journal of Applied Physics.

“Hot spots can severely degrade a microprocessor's performance and reliability, but cooling methods that address the entire chip cause unnecessary over-cooling, as well as raise the cost, weight, and volume of the cooling solution,” said corresponding researcher Avram Bar-Cohen to PhysOrg.com.

Building on prior analytical work*, Bar-Cohen and co-researcher Peng Wang, both mechanical engineers, developed a three-dimensional mathematical model of the thermal behavior of a silicon chip using computer software. The model accounts for all aspects of heating and cooling on the chip, including localized cooling, hot-spot heating, background heating from nearby circuitry, and conductive/convective cooling through the back of the chip.

The model predicts that when an electric current is applied to a region of “highly doped” silicon (silicon with a high level of added impurities) on the back of a chip, a cool region will be created on the chip. If the cool region is located opposite a microprocessor hot spot, it will absorb heat and lower the hot spot temperature. This localized cooling phenomena occurs via the thermoelectric effect – the use of electrical energy to transfer heat against the natural hot-to-cold thermal gradient. The silicon and the metal lead that brings electric current to the back of the chip have very different thermoelectric sensitivities. As a result, a cooling effect occurs at the contact-cap and cap-silicon junctions and heat is pulled up out of the hot spot.

“Although thermoelectric cooling is not a new technology and thermoelectric coolers made of bismuth telluride have been available for many years, the use of the silicon chip itself as the thermoelectric cooler is a novel and groundbreaking approach to hot spot remediation,” said Bar-Cohen.

He and Wang initially programmed their model to consider a chip 12 millimeters (mm) square with a hot spot 70 micrometers (millionths of a meter) square. From there, they varied the thicknesses of the chip and the cap to investigate how the cooling performance changed. They found that, in general, microcoolers that are approximately five times the chip thickness (up to 1-2 mm in size) and thinner chips (a few hundred micrometers thick) yield the best results.

Similar microcooling systems have been proposed, such as thin-film thermoelectric coolers, or TFTECs, which consist of two layered ultra-thin semiconductor lattices, such as silicon-germanium on top of silicon. Like the silicon microcoolers, TFTECs are positioned on the back of the silicon chip to pull away heat. Among their advantages are compactness and fast cooling response. One main disadvantage, however, is that for such TFTECs a thermal “interface” resistance is present between the chip and the thin film, reducing the cooling effect.

Citation: Peng Wang and Avram Bar-Cohen, “On-chip hot spot cooling using silicon thermoelectric microcoolers” Journal of Applied Physics 102, 034503 (2007)

*Peng Wang, Avram Bar-Cohen, Bao Yang, Gary L. Solbrekken, and Ali Shakouri, “Analytical modeling of silicon thermoelectric microcooler” Journal of Applied Physics 100, 014501 (2006)

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Smaller microchips that keep their cool

Apr 02, 2014

Temperatures often over 200 degrees C occur in geothermal and oil production – conventional microelectronics hit their limits there. Researchers have now fabricated compact microchips that can keep their ...

Ultra sensitive detection of radio waves with lasers

Mar 05, 2014

Radio waves are used for many measurements and applications, for example, in communication with mobile phones, MRI scans, scientific experiments and cosmic observations. But 'noise' in the detector of the ...

Digital music gets a cubist makeover

Feb 07, 2014

An 8-inch wooden cube may be an unlikely spark for a musical revolution – but that's the hope of a collaboration of electronic engineers and musicians working towards hackable electronic instruments that ...

Cooling microprocessors with carbon nanotubes

Jan 22, 2014

"Cool it!" That's a prime directive for microprocessor chips and a promising new solution to meeting this imperative is in the offing. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley ...

New LED packaging technology improves performance

Sep 25, 2012

(Phys.org)—Many researchers have reported improvements in LED technology by enhancing the properties of the LED itself. But the packaging that secures and protects the LED also impacts its overall performance. ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...