Corals and climate change

Aug 22, 2007
Climate Change and Corals
Using two Caribbean coral species as its study subjects, Montastraea faveolata (mountainous star coral) and Porites furcata (finger coral), the research team will study how the world's increasingly acidic oceans (caused by increasing atmospheric carbon dioxide) affect these corals when accompanied with increasing ocean temperatures as well. Credit: Chris Langdon, University of Miami

A modest new lab at the Rosenstiel School is the first of its kind to tackle the global problem of climate change impacts on corals. Fully operational this month, this new lab has begun to study how corals respond to the combined stress of greenhouse warming and ocean acidification. The lab is the first to maintain corals under precisely controlled temperature and carbon dioxide conditions while exposing them to natural light conditions.

Using two Caribbean coral species as its study subjects, Montastraea faveolata (mountainous star coral) and Porites furcata (finger coral), the research team will study how the world’s increasingly acidic oceans (caused by increasing atmospheric carbon dioxide) affect these corals when accompanied with increasing ocean temperatures as well.

“I was interested in stressing corals at differing levels of carbon dioxide and temperatures much like they would experience in the next 50 to 100 years to see if skeletal development is affected,” said Dr. Chris Langdon, one of the lab’s creators and the scientist who developed a similar lab at the University of Hawaii studying corals at varying carbon dioxide changes alone.

Dr. Andrew Baker, co-creator and also a Rosenstiel School faculty, has spent much of his career looking at climate change impacts on corals and has geared his perspective towards understanding whether corals can adapt to any of these changes. “It’s clear that corals of the future will see much warmer, more acidic oceans than we have now,” Baker said. “By mimicking these same changes in the laboratory we get a much clearer idea of how these corals will respond.”

Source: University of Miami

Explore further: Study shows no lead pollution in oilsands region

add to favorites email to friend print save as pdf

Related Stories

Rock-dwelling microbes remove methane from deep sea

Oct 15, 2014

Methane-breathing microbes that inhabit rocky mounds on the seafloor could be preventing large volumes of the potent greenhouse gas from entering the oceans and reaching the atmosphere, according to a new ...

Scientists sound alarm over ocean acidification

Oct 08, 2014

Ocean acidification has risen by a quarter since pre-industrial times as a result of rising carbon emissions, casting a shadow over the seas as a future source of food, scientists warned on Wednesday.

Mangroves protecting corals from climate change

Oct 08, 2014

Certain types of corals, invertebrates of the sea that have been on Earth for millions of years, appear to have found a way to survive some of their most destructive threats by attaching to and growing under ...

Coral growth rate plummets in 30-year comparison

Sep 17, 2014

A team of researchers working on a Carnegie expedition in Australia's Great Barrier Reef has documented that coral growth rates have plummeted 40% since the mid-1970s. The scientists suggest that ocean acidification ...

Recommended for you

Study shows no lead pollution in oilsands region

3 hours ago

New research from a world-renowned soil and water expert at the University of Alberta reveals that there's no atmospheric lead pollution in Alberta's oilsands region—a finding that contradicts current scientific ...

User comments : 0