Computing breakthrough could elevate security to unprecedented levels

Aug 16, 2007

By using pulses of light to dramatically accelerate quantum computers, University of Michigan researchers have made strides in technology that could foil national and personal security threats.

It's a leap, they say, that could lead to tougher protections of information and quicker deciphering of hackers' encryption codes.

A new paper on the results of this research, "Coherent Optical Spectroscopy of a Strongly Driven Quantum Dot," appears in the Aug. 17 issue of Science. Duncan Steel, the Robert J. Hiller Professor at Michigan Engineering's Department of Electrical Engineering and Computer Science and the Department of Physics, is one of the lead authors of the paper. Faculty from the University of California-San Diego and the Naval Research Laboratory in Washington, D.C., also contributed.

The researchers used short, coherent pulses of light to create light-matter interactions in quantum dots---particles so small that the addition or deletion of electrons changes their properties. They found they could control the frequency and phase shifts in the optical network, which is crucial in powering an optically driven quantum computer, Steel said.

Optically driven quantum computers can crack highly encrypted codes in seconds. The fastest of today's desktop computers would require 20 years.

Part of what makes quantum computers so fast is that they are multitask masters.

"Quantum computers are capable of massive parallel computations," Steel said. "That's why these machines are so fast."

And the technology the researchers used to power them in this study is relatively cheap.

"We're particularly excited about our findings because they show that we can achieve these results by using quantum dots and readily available, relatively inexpensive optical telecommunications technology to drive quantum computers," Steel said. "Quantum dots replace transistors in these computers, and our results show that it only takes a few billionths of a watt to drive it."

U-M researchers are using quantum dot systems to pave the way for numerous quantum level applications, such as quantum dot dressed state lasers, optical modulators and quantum logic devices.

This discovery in quantum dot spectroscopy is an important stepping stone to building a quantum computer for the future. Spectroscopy is the study of the interaction between light and matter.

Source: University of Michigan

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

3,000 atoms entangled with a single photon

15 hours ago

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

Atlas of thoughts

Mar 19, 2015

Using a computer game, a research group at Aarhus University has found a way to gain deeper insight into the human thought process. The results have amazed the research director, who has discovered a kind ...

Recommended for you

New insights found in black hole collisions

13 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

13 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

16 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.