Proposed 'Nanomechanical' Computer is Both Old-School and Cutting-Edge

Aug 03, 2007 by Laura Mgrdichian feature

A group of engineers have proposed a novel approach to computing: computers made of billionth-of-a-meter-sized mechanical elements. Their idea combines the modern field of nanoscience with the mechanical engineering principles used to design the earliest computers.

In a recent paper in the New Journal of Physics, the researchers, from the University of Wisconsin-Madison (UWM), describe how such a nanomechanical computer could be designed, built, and put to use.

Their work is a contemporary take on one of the very first computer designs: the “difference engine,” a 15-ton, eight-foot-high mechanical calculator designed by English mathematician and engineer Charles Babbage beginning in 1822. Corresponding UWM scientist Robert Blick said that he was also inspired by the design of a small hand-cranked mechanical calculator invented and sold in the 1950s, the Curta.

The computer they envision could never be as fast as traditional semiconductor-based computers, where individual transistors can operate at 100 gigahertz (GHz). However, Blick told, “We designed the circuits in this nanomechanical computer with the idea in mind that, at the nanoscale, mechanical motion is quite fast – 100 megahertz to a few gigahertz. This should make them competitive with existing micro-processors, which are used in a variety of mundane applications.”

Among these applications are appliances, electronic toys, and automobiles, all which contain basic computers in order to function but don't require ultra-fast processors.

The design's basic unit is the “nanomechanical single-electron transistor,” or NEMSET, a tiny circuit component that combines a typical silicon transistor with a nanoscale mechanical switch – a tiny moving part. A full circuit composed of multiple NEMSETs could be created, the researchers say, using one step of photolithography and one step of etching, methods commonly used to create silicon-based circuits.

The nanomechanical computer has three main advantages compared to semiconductor-based computers. It is more resilient to electric shock, its circuits can operate at significantly higher temperatures (several hundred degrees Celsius), and it is much more energy efficient, dissipating a fraction of the energy of traditional computers.

Additionally, the computer's memory structure may have an edge over standard memory. A nanomechanical form of memory may not need to be restricted to the “1” and “0” states that a typical computer uses to store a single bit (the most basic unit of information; these values correspond to a memory cell that is either charged or uncharged). A nanomechanical system could have several stable states, allowing for more efficient data storage.

Citation: Robert H Blick, Hua Qin, Hyun-Seok Kim and Robert Marsland, “A nanomechanical computer—exploring new avenues of computing” New Journal of Physics 9 (2007) 241.

Copyright 2007
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Study reveals new characteristics of complex oxide surfaces

add to favorites email to friend print save as pdf

Related Stories

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Engineers make world's smallest FM radio transmitter

Nov 18, 2013

A team of Columbia Engineering researchers, led by Mechanical Engineering Professor James Hone and Electrical Engineering Professor Kenneth Shepard, has taken advantage of graphene's special properties—its mechanical strength ...

Quantum computers counting on carbon nanotubes

Mar 21, 2013

Carbon nanotubes can be used as quantum bits for quantum computers. A study by physicists at the Technische Universitaet Muenchen has shown how nanotubes can store information in the form of vibrations. Up ...

Recommended for you

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0