Clearing Electron Clouds

Aug 02, 2007
Clearing Electron Clouds
The circular device inside this accelerator structure coats the structure with titanium nitride to keep electron clouds in check.

Clouds might be welcome during a drought, but you definitely don't want them in your beam pipes. Researchers around the world are working out how to keep a section of the proposed International Linear Collider—the positron damping ring—clear of electron clouds.

In curved sections of accelerators, such as a damping ring, the beam throws off synchrotron radiation that plows into the beam pipe walls, kicking up electrons embedded in the wall. The newly freed electrons get pulled along with the next bunch of positrons in the beam, but then some hit the wall, freeing so-called secondary electrons. Soon a cloud of electrons clogs up the beam pipe.

"When the beam passes through a cloud, it's like a plane passing through turbulence," said Mauro Pivi, of SLAC's ILC Accelerator Design group.

One way to suppress clouds is to choose beam pipe materials that let fewer electrons escape. Pivi, Robert Kirby of the Surface & Materials Science Department, and their colleagues are measuring the "secondary electron yield," looking for surface materials that limit the number secondary electrons produced, ideally to less than one for every electron that strikes the wall.

"If the yield is below one, the cloud doesn't have time to form," Pivi said.

Researchers at SLAC have tested the yield of a coating material called titanium nitride, already used in parts of the PEP-II accelerator. Recent work done at SLAC and KEK in Japan has shown that the yield decreases after the material has been exposed to the passing beam.

Researchers used an electron gun located in Building 40 to measure a yield of 1.8 secondary electrons produced for every incoming electron. Then they took a sample of the material to the PEP-II tunnel. Using a transfer line, they inserted the sample inside the vacuum chamber, plugging a hole in the beam pipe wall. After weeks of exposure to the accelerator's synchrotron radiation, which scours contamination off the walls, the sample of titanium nitride had a yield below one.

While promising, this avenue of research is just one of the paths being explored in the quest to keep the positron damping ring clear.

Source: by Heather Rock Woods, SLAC Today

Explore further: How the physics of champagne bubbles may help address the world's future energy needs

add to favorites email to friend print save as pdf

Related Stories

Fingers pointed as climate talks deadlock

3 hours ago

Accusations flew at deadlocked UN climate talks in Lima on Saturday, as the United States warned that failure to compromise could doom the 22-year-old global forum.

Fun cryptography app pleases students and teachers

13 hours ago

Up on Google Play this week is Cryptoy...something that you might want to check out if you or someone you know wishes entry into the world of cryptography via an educational and fun app. You learn more about ciphers and keys; you ...

Recommended for you

What's next for the Large Hadron Collider?

Dec 17, 2014

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.