Clearing Electron Clouds

Aug 02, 2007
Clearing Electron Clouds
The circular device inside this accelerator structure coats the structure with titanium nitride to keep electron clouds in check.

Clouds might be welcome during a drought, but you definitely don't want them in your beam pipes. Researchers around the world are working out how to keep a section of the proposed International Linear Collider—the positron damping ring—clear of electron clouds.

In curved sections of accelerators, such as a damping ring, the beam throws off synchrotron radiation that plows into the beam pipe walls, kicking up electrons embedded in the wall. The newly freed electrons get pulled along with the next bunch of positrons in the beam, but then some hit the wall, freeing so-called secondary electrons. Soon a cloud of electrons clogs up the beam pipe.

"When the beam passes through a cloud, it's like a plane passing through turbulence," said Mauro Pivi, of SLAC's ILC Accelerator Design group.

One way to suppress clouds is to choose beam pipe materials that let fewer electrons escape. Pivi, Robert Kirby of the Surface & Materials Science Department, and their colleagues are measuring the "secondary electron yield," looking for surface materials that limit the number secondary electrons produced, ideally to less than one for every electron that strikes the wall.

"If the yield is below one, the cloud doesn't have time to form," Pivi said.

Researchers at SLAC have tested the yield of a coating material called titanium nitride, already used in parts of the PEP-II accelerator. Recent work done at SLAC and KEK in Japan has shown that the yield decreases after the material has been exposed to the passing beam.

Researchers used an electron gun located in Building 40 to measure a yield of 1.8 secondary electrons produced for every incoming electron. Then they took a sample of the material to the PEP-II tunnel. Using a transfer line, they inserted the sample inside the vacuum chamber, plugging a hole in the beam pipe wall. After weeks of exposure to the accelerator's synchrotron radiation, which scours contamination off the walls, the sample of titanium nitride had a yield below one.

While promising, this avenue of research is just one of the paths being explored in the quest to keep the positron damping ring clear.

Source: by Heather Rock Woods, SLAC Today

Explore further: Cooling with molecules

add to favorites email to friend print save as pdf

Related Stories

Synchrotron upgrade to make X-rays even brighter

Oct 21, 2014

(Phys.org) —The X-rays produced by the Cornell High Energy Synchrotron Source (CHESS) are bright, but they will soon be even brighter, thanks to a major upgrade that will make the quality of CHESS' X-rays ...

Work on pioneering pan-European neutron facility underway

Oct 21, 2014

A state-of-the-art facility capable of generating neutron beams 30 times brighter than current facilities is about to be constructed in the Swedish town of Lund. The EUR 1.8 billion will help scientists examine ...

POLARBEAR seeks cosmic answers in microwave polarization

Oct 21, 2014

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

'Attosecond' science breakthrough

Oct 21, 2014

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

Recommended for you

Cooling with molecules

23 minutes ago

An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. ...

Backpack physics: Smaller hikers carry heavier loads

23 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

23 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

User comments : 0