Cassini Finds Possible Origin of One of Saturn's Rings

Aug 02, 2007
Cassini Finds Possible Origin of One of Saturn's Rings
This image shows the arc orbits at a distance of 167,496 kilometres. It is about 250 kilometres wide in radius and subtends less than 60 degrees of orbital longitude. The classical position of the G ring is about 172,600 kilometres from Saturn, and the arc blends smoothly into this region. Scientists suspect that bodies trapped in this remarkably bright feature may be the source of the G ring material, driven outward from the arc by electromagnetic forces in the Saturn system. The arc itself is likely held in place by gravitational resonances with Mimas of the type that anchor the famed arcs in Neptune's rings. There is an obvious narrow dark gap in the G ring beyond the arc. This feature is close to yet another resonance with Mimas, but no arcs are present at this locale. Credits: NASA - JPL - Space Science Institute

Cassini scientists may have identified the source of one of Saturn's more mysterious rings. Saturn's G ring likely is produced by relatively large, icy particles that reside within a bright arc on the ring's inner edge.

The particles are confined within the arc by gravitational effects from Saturn's moon Mimas. Micrometeoroids collide with the particles, releasing smaller, dust-sized particles that brighten the arc. The plasma in the giant planet's magnetic field sweeps through this arc continually, dragging out the fine particles, which create the G ring.

The finding is evidence of the complex interaction between Saturn's moons, rings and magnetosphere. Studying this interaction is one of Cassini's objectives. The study is in the Aug. 2 issue of the journal Science and was based on observations made by multiple Cassini instruments in 2004 and 2005.

"Distant pictures from the cameras tell us where the arc is and how it moves, while plasma and dust measurements taken near the G ring tell us how much material is there," said Matthew Hedman, a Cassini imaging team associate at Cornell University in Ithaca, N.Y., and lead author on the Science paper.

Saturn's rings are an enormous, complex structure, and their origin is a mystery. The rings are labeled in the order they were discovered. From the planet outward, they are D, C, B, A, F, G and E. The main rings -- A, B and C-from edge-to-edge, would fit neatly in the distance between Earth and the moon. The most transparent rings are D -- interior to C -- and F, E and G, outside the main rings.

Unlike Saturn's other dusty rings, such as the E and F rings, the G ring is not associated closely with moons that either could supply material directly to it -- as Enceladus does for the E ring -- or sculpt and perturb its ring particles -- as Prometheus and Pandora do for the F ring. The location of the G ring continued to defy explanation, until now.

Cassini images show that the bright arc within the G ring extends one-sixth of the way around Saturn and is about 155 miles wide, much narrower than the full 3,700-mile width of the G ring. The arc has been observed several times since Cassini's 2004 arrival at the ringed planet and thus appears to be a long-lived feature. A gravitational disturbance caused by the moon Mimas exists near the arc.

As part of their study, Hedman and colleagues conducted computer simulations that showed the gravitational disturbance of Mimas could indeed produce such a structure in Saturn's G ring. The only other places in the solar system where such disturbances are known to exist are in the ring arcs of Neptune.

Cassini's magnetospheric imaging instrument detected depletions in charged particles near the arc in 2005. According to the scientists, unseen mass in the arc must be absorbing the particles. "The small dust grains that the Cassini camera sees are not enough to absorb energetic electrons," said Elias Roussos of the Max-Planck-Institute for Solar System Research, Germany, and member of the magnetospheric imaging team. "This tells us that a lot more mass is distributed within the arc."

The researchers concluded that there is a population of larger, as-yet-unseen bodies hiding in the arc, ranging in size from that of peas to small boulders. The total mass of all these bodies is equivalent to that of a 328-foot-wide, ice-rich small moon.

Joe Burns, a co-author of the paper from Cornell University and a member of the imaging team, said, "We'll have a super opportunity to spot the G ring's source bodies when Cassini flies about 600 miles from the arc 18 months from now."

Source: NASA

Explore further: Galaxy clusters collide—dark matter still a mystery

add to favorites email to friend print save as pdf

Related Stories

Image: Smile, and the universe smiles with you

Feb 11, 2015

An upbeat-looking galaxy cluster appears to smile at us in a newly released image from the NASA/ESA Hubble Space Telescope. The cluster - designated as SDSS J1038+4849 - appears to have two eyes and a nose ...

Understanding the copper heart of volcanoes

Feb 09, 2015

The link between volcanism and the formation of copper ore has been discovered by researchers from the University of Bristol, UK. Their findings, published today in Nature Geoscience, could have far-reaching implic ...

Tracking the night sky for January 2015

Jan 05, 2015

Jupiter will dominate the night during January from the time it rises until dawn, soaring high across the sky in the constellation Leo the Lion about 10 degrees northwest of Leo's brightest star, Regulus.

Recommended for you

Dark matter is darker than once thought

33 minutes ago

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

18 hours ago

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

23 hours ago

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.