Graphene oxide paper could spawn a new class of materials

Jul 25, 2007

Nearly 2,000 years ago, the discovery of paper revolutionized human communication. Now researchers at Northwestern University have fabricated a new type of paper that they hope will create a revolution of its own -- and while it won't replace your notepad, this remarkably stiff and strong yet lightweight material should find use in a wide variety of applications.

In a paper to be published July 26 in the journal Nature, researchers led by Rod Ruoff, John Evans Professor of Nanoengineering in the Robert R. McCormick School of Engineering and Applied Science, report on the development of graphene oxide.

Ruoff's research team was the first to develop graphene-based composite materials, which was reported in Nature last year. Graphene -- a sheet of carbon only one atom thick -- has the potential to serve as the basis of an entirely new class of materials.

"The mechanical, thermal, optical and electrical properties of graphene are exceptional," says Ruoff. "For example, the stiffness and strength of these graphene-like sheets should be superior to all other materials, with the possible exception of diamond."

To form the graphene oxide paper, the group oxidized graphite to create graphite oxide, which falls apart in water to yield well-dispersed graphene oxide sheets. After filtering the water, the team was able to fabricate pieces of graphene oxide 'paper' more than five inches in diameter and with thicknesses from about one to 100 microns, in which the individual micron-sized graphene oxide sheets are stacked on top of each other.

"I have little doubt that very large-area sheets of this paper-material could be made in the future," Ruoff notes.

In addition to their superior mechanical properties as individual sheets, the graphene oxide layers stack well, which could be key to the development of other materials.

"You can imagine that these microscale sheets may be stacked together and chemically linked, allowing us to further optimize the mechanical properties of the resulting macroscale object," Ruoff says. "This combination of excellent mechanical properties and chemical tunability should make graphene-based paper an exciting material."

Of further interest are the electrical properties of the graphene oxide paper in comparison to graphene sheets. "When we oxidize the graphene sheets to create graphene oxide, the material goes from being an electrical conductor to an electrical insulator," Ruoff says. "This is an important step and in the future it will be possible to tune the material as a conductor, semiconductor or insulator. One will be able to control the electrical properties without sacrificing exceptional mechanical properties."

Ruoff sees a wide variety of application for graphene oxide paper, including membranes with controlled permeability, and for batteries or supercapacitors for energy applications. Graphene oxide paper could also be infused to create hybrid materials containing polymers, ceramics or metals, where such composites would perform much better than existing materials as components in, for example, airplanes, cars, buildings and sporting goods products.

The development of this paper-like material is the latest of several recent advancements by Ruoff's team in launching the new field of graphene-based materials. In a paper in the July issue of Nano Letters, the group reported that graphene sheets could be embedded into glass films to make them electrically conductive. These transparent thin films could find applications in solar cells or a variety of transparent electronics such as electronic paper and flexible color screens. The processing of these films may provide a cheaper alternative to the widely used indium tin oxide coatings that are typically used as the transparent conductive film.

Source: Northwestern University

Explore further: Demystifying nanocrystal solar cells

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.