Europe takes leading role in developing chip design tools for next-generation wireless applications

Feb 01, 2006

Philips Electronics, austriamicrosystems, MAGWEL, IMEC and the universities of Lisbon, Bucharest and Delft today announced that they have joined forces in the 'CHAMELEON-RF' project - a European Union IST (Information Society Technologies) 6th Framework Program project targeted at producing better tools for designing the complex nano-scale silicon chips at the heart of next-generation wireless communication products.

By allowing the RF (Radio Frequency) circuits needed in these products to be efficiently and reliably integrated into low-cost silicon chips, these design tools will help to ensure the timely introduction of ever-more advanced communication products that keep consumers connected wherever they are.

"The objective of the CHAMELEON-RF project is to provide chip designers with the electronic design automation tools they need in order to achieve right-first-time RF designs," says Dr. Wil Schilders, Chairman of the CHAMELEON-RF consortium. "To do that we aim to create computer models that will allow silicon-accurate simulation of complete RF circuit blocks rather than single components."

The group will develop simulation models that accurately predict the behavior of RF silicon integrated circuits at frequencies up to 60 GHz. This very high frequency, which is over ten times the highest radio frequency currently used in typical consumer products, is considered necessary to enable next-generation, high data-rate wireless connectivity systems. These models will take into account the fundamental physical principles of the electrical current flow in circuits and devices and the electromagnetic fields they generate, as well as the electromagnetic interaction between these fields and the circuit components. They will also take into account the effect of process variations in the semiconductor processes used to fabricate the chips. The results will be built into simulation models that will run within the computational constraints of typical EDA (Electronic Design Automation) workstations, enabling them to be incorporated into commercial EDA tools.

The latest multi-band GSM mobile phones are already capable of processing the radio frequencies required to operate across five different continents. They may even incorporate Bluetooth wireless technology, Wi-Fi connections, GPS (Global Positioning System) and Digital TV receivers. Probable new additions will include UWB (Ultra WideBand) for wireless USB connections and Wi-Max for mobile Internet access. Similar wireless connectivity is also appearing in PDAs, lap-top computers and games consoles. Implementing this multi-mode multi-band wireless connectivity within the size, weight, cost and power consumption limitations of consumer products will require the necessary RF circuits to be integrated into increasingly complex nano-scale silicon chips.

Although it is a common belief that radio waves are transmitted and received only through a radio's antenna, the truth is that each individual component in an RF circuit acts as its own antenna. As such, each component is capable of radiating and absorbing a small amount of RF energy to and from its local environment. In conventional RF circuits made up of discrete components mounted on a printed circuit board, most components are mounted sufficiently far apart for the effects of this localized RF radiation to be either minimal or easily screened by enclosing critical components in metal cans.

However, when these circuits are shrunk to nanometer proportions on a silicon chip, the components are sufficiently close together for adjacent devices to mutually interfere with one another via leakage of RF energy from one component to another. At present, there are no EDA (Electronic Design Automation) tools that allow chip designers to take these effects, and other effects such as RF noise carried through the chip's silicon substrate, into consideration. As a result, RF chip design has remained a difficult time-consuming and risky operation, with success or failure frequently depending on the skill of individual designers.

Source: IMEC

Explore further: Simplicity is key to co-operative robots

add to favorites email to friend print save as pdf

Related Stories

Self-powered wireless light detectors

Mar 12, 2014

Light detectors are used extensively in daily life as brightness sensors and as receivers for remote control devices in electrical gadgets, for example. However, operating these detectors requires electrical ...

New wireless transceiver technology for medical devices

Feb 12, 2014

Fujitsu Laboratories and imec Holst Centre today announced that they have developed a wireless transceiver circuit for use in body area networks (BAN) for medical applications that adheres to the 400 MHz-band ...

Recommended for you

Simplicity is key to co-operative robots

7 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

8 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

IBM posts lower 1Q earnings amid hardware slump

9 hours ago

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Microsoft CEO is driving data-culture mindset

10 hours ago

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

User comments : 0

More news stories

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...