Semiconductor membrane mimics biological behavior of ion channels

Jul 12, 2007

A semiconductor membrane designed by researchers at the University of Illinois could offer more flexibility and better electrical performance than biological membranes. Built from thin silicon layers doped with different impurities, the solid-state membrane also could be used in applications such as single-molecule detection, protein filtering and DNA sequencing.

“By creating nanopores in the membrane, we can use the membrane to separate charged species or regulate the flow of charged molecules and ions, thereby mimicking the operation of biological ion channels,” said lead researcher.

Jean-Pierre Leburton, the Stillman Professor of Electrical and Computer Engineering at Illinois.

Leburton, with postdoctoral research associate Maria Gracheva and graduate student Julien Vidal, simulated the operation of the semiconductor membrane at a number of electrostatic potentials. They report their findings in a paper accepted for publication in the journal Nano Letters, and posted on the journal’s Web site.

In the researchers’ model, the nanopore-membrane structure is made of two layers of silicon, each 12 nanometers thick, with opposite (n- and p-) doping. The electrostatic potential is positive on the n-side and negative on the p-side of the membrane.

The nanopore has an hourglass shape, with a neck 1 nanometer in diameter and openings on each side of the membrane 6 nanometers in diameter. The “size” of the nanopore can be changed by changing the electrostatic potential around it.

By controlling the flow of ions, the artificial nanopore offers a degree of tunability not found in biological ion channels, said Leburton, who also is a researcher at the university’s Beckman Institute, the Coordinated Research Laboratory, and the Micro and Nanotechnology Laboratory.

In addition to serving as a substitute for biological ion channels, the solid-state nanopore and membrane could be used in other applications, including sequencing DNA.

“Using semiconductor technology to sequence the DNA molecule would save time and money,” Leburton said. “By biasing the voltage across the membrane, we could pull DNA through the nanopore. Since each base pair carries a different electrical charge, we could use the membrane as a p-n junction to detect the changing electrical signal.”

Source: University of Illinois at Urbana-Champaign

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

New system to improve DNA sequencing

Apr 03, 2013

(Phys.org) —A sensing system developed at Cambridge is being commercialised in the UK for use in rapid, low-cost DNA sequencing, which would make the prediction and diagnosis of disease more efficient, ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.