New lens device will shrink huge light waves to pinpoints

Jul 12, 2007
Focused Waves
Picture is a color-coded plot of the electromagnetic field. The device, or plate, is at the left edge of the picture. Focusing is clearly seen at the horizontal axis value of seven. Credit: Roberto Merlin

Manipulating light waves, or electromagnetic radiation, has led to many technologies, from cameras to lasers to medical imaging machines that can see inside the human body.

Scientists at the University of Michigan have developed a way to make a lens-like device that focuses electromagnetic waves down to the tiniest of points. The breakthrough opens the door to the next generation of technology, said Roberto Merlin, professor of physics at U-M. His research on the discovery will be published online July 12 in Science Express.

Everywhere we go, we are surrounded by electromagnetic waves that are generated naturally, such as sunlight, and artificially, by appliances such as microwave ovens and radio transmitters. Some waves are visible, and some are invisible.

Materials respond differently to different wavelengths, and when using electromagnetic waves, one is usually limited by the length of the light wave, Merlin said. For example, the amount of information you can store on a CD is limited by the number of bits you can fit on the CD, and this is dictated by the length of the electromagnetic wave. The smaller the wavelength, the smaller the bit, which means more bits of data can be stored on the CD.

There is a huge push underway to find ways to get around this limitation, but until now scientists didn't have a good method for achieving that, Merlin said.

Using mathematical models, Merlin developed a formula that removes the wavelength limitation. Merlin is now working with assistant professor Anthony Grbic from the U-M College of Engineering to build the device, and they have filed for a patent.

The device will look like a plate or a disc, and is etched with a specific pattern. As the waves pass through the patterned lens, it is sculpted into different sizes and shapes. The lens does not refract, or bend the light waves---which is how conventional lenses work---but rather it reshapes the wave.

The discovery holds promise for applications in data storage, non-contact sensing, imaging, and nanolithography.

With the new technology, a CD could hold up to one hundred times more information by using terahertz radiation rather than visible light, even though the length of a terahertz wave is about 1000 times longer.

Source: University of Michigan

Explore further: Pennies reveal new insights on the nature of randomness

add to favorites email to friend print save as pdf

Related Stories

New insight found in black hole collisions

20 hours ago

New research by an astrophysicist at The University of Texas at Dallas provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger ...

Top-precision optical atomic clock starts ticking

15 hours ago

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

Novel high-power microwave generator

Feb 11, 2015

High-power microwaves are frequently used in civil applications, such as radar and communication systems, heating and current drive of plasmas in fusion devices, and acceleration in high-energy linear colliders. ...

Recommended for you

Argonne research expanding from injectors to inhalers

3 hours ago

There is a world of difference between tailpipes and windpipes, but researchers at the Department of Energy's Argonne National Laboratory have managed to link the two with groundbreaking research that could ...

Pennies reveal new insights on the nature of randomness

10 hours ago

The concept of randomness appears across scientific disciplines, from materials science to molecular biology. Now, theoretical chemists at Princeton have challenged traditional interpretations of randomness ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.