Nonlinearities could be strengthened by photonic crystals

Jul 10, 2007

Typically, photons can pass by one another unchanged. However, a number of important scientific and technological applications can be enabled by using matter as a medium for photons to talk with one another. The problem? These interactions are generally weak.

Now, in an upcoming issue of Physical Review Letters, MIT physicists led by Peter Bermel, a postdoctoral associate in the Research Laboratory of Electronics, discuss a scheme that can strongly enhance the strength of these interactions in a completely new way.

The work could have implications for telecommunications, optical computing, and, ultimately, quantum computing.

The MIT scheme consists of placing a nonlinear material inside a photonic crystal. The latter is characterized by its photonic bandgap, a range of frequencies for which photons are almost perfectly reflected. Its presence allows more time for nonlinear processes to take place. However, the nonlinear material is probed at a frequency just below the photonic bandgap.

For certain special materials, such as single nanocrystals of cadmium selenide, the degree to which this lifetime can be increased may be as much as a factor of forty at room temperature. For other materials, an enhancement of at least a factor of two is expected. Enhanced optical nonlinearities should allow much lower powers and volumes to be used in nonlinear devices.

This work was funded by the Army Research Office through MIT's Institute for Soldier Nanotechnologies.

Source: MIT

Explore further: Heat makes electrons spin in magnetic superconductors

Related Stories

Wrinkled surfaces could have widespread applications

Aug 01, 2012

The wrinkles on a raisin result from a simple effect: As the pulp inside dries, the skin grows stiff and buckles to accommodate its shrinking size. Now, a team of researchers at MIT has discovered a way to ...

Recommended for you

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

ICARUS neutrino experiment to move to Fermilab

Apr 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's ...

National security on the move with high energy physics

Apr 23, 2015

Scientists are developing a portable technology that will safely and quickly detect nuclear material hidden within large objects such as shipping cargo containers or sealed waste drums. The researchers, led ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.