Nonlinearities could be strengthened by photonic crystals

Jul 10, 2007

Typically, photons can pass by one another unchanged. However, a number of important scientific and technological applications can be enabled by using matter as a medium for photons to talk with one another. The problem? These interactions are generally weak.

Now, in an upcoming issue of Physical Review Letters, MIT physicists led by Peter Bermel, a postdoctoral associate in the Research Laboratory of Electronics, discuss a scheme that can strongly enhance the strength of these interactions in a completely new way.

The work could have implications for telecommunications, optical computing, and, ultimately, quantum computing.

The MIT scheme consists of placing a nonlinear material inside a photonic crystal. The latter is characterized by its photonic bandgap, a range of frequencies for which photons are almost perfectly reflected. Its presence allows more time for nonlinear processes to take place. However, the nonlinear material is probed at a frequency just below the photonic bandgap.

For certain special materials, such as single nanocrystals of cadmium selenide, the degree to which this lifetime can be increased may be as much as a factor of forty at room temperature. For other materials, an enhancement of at least a factor of two is expected. Enhanced optical nonlinearities should allow much lower powers and volumes to be used in nonlinear devices.

This work was funded by the Army Research Office through MIT's Institute for Soldier Nanotechnologies.

Source: MIT

Explore further: Finding faster-than-light particles by weighing them

add to favorites email to friend print save as pdf

Related Stories

Wrinkled surfaces could have widespread applications

Aug 01, 2012

The wrinkles on a raisin result from a simple effect: As the pulp inside dries, the skin grows stiff and buckles to accommodate its shrinking size. Now, a team of researchers at MIT has discovered a way to ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guideĀ to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.