Nonlinearities could be strengthened by photonic crystals

Jul 10, 2007

Typically, photons can pass by one another unchanged. However, a number of important scientific and technological applications can be enabled by using matter as a medium for photons to talk with one another. The problem? These interactions are generally weak.

Now, in an upcoming issue of Physical Review Letters, MIT physicists led by Peter Bermel, a postdoctoral associate in the Research Laboratory of Electronics, discuss a scheme that can strongly enhance the strength of these interactions in a completely new way.

The work could have implications for telecommunications, optical computing, and, ultimately, quantum computing.

The MIT scheme consists of placing a nonlinear material inside a photonic crystal. The latter is characterized by its photonic bandgap, a range of frequencies for which photons are almost perfectly reflected. Its presence allows more time for nonlinear processes to take place. However, the nonlinear material is probed at a frequency just below the photonic bandgap.

For certain special materials, such as single nanocrystals of cadmium selenide, the degree to which this lifetime can be increased may be as much as a factor of forty at room temperature. For other materials, an enhancement of at least a factor of two is expected. Enhanced optical nonlinearities should allow much lower powers and volumes to be used in nonlinear devices.

This work was funded by the Army Research Office through MIT's Institute for Soldier Nanotechnologies.

Source: MIT

Explore further: Simultaneous imaging of ferromagnetic and ferroelectric domains

add to favorites email to friend print save as pdf

Related Stories

Wrinkled surfaces could have widespread applications

Aug 01, 2012

The wrinkles on a raisin result from a simple effect: As the pulp inside dries, the skin grows stiff and buckles to accommodate its shrinking size. Now, a team of researchers at MIT has discovered a way to ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

19 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

Oct 01, 2014

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

Oct 01, 2014

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0