Nonlinearities could be strengthened by photonic crystals

Jul 10, 2007

Typically, photons can pass by one another unchanged. However, a number of important scientific and technological applications can be enabled by using matter as a medium for photons to talk with one another. The problem? These interactions are generally weak.

Now, in an upcoming issue of Physical Review Letters, MIT physicists led by Peter Bermel, a postdoctoral associate in the Research Laboratory of Electronics, discuss a scheme that can strongly enhance the strength of these interactions in a completely new way.

The work could have implications for telecommunications, optical computing, and, ultimately, quantum computing.

The MIT scheme consists of placing a nonlinear material inside a photonic crystal. The latter is characterized by its photonic bandgap, a range of frequencies for which photons are almost perfectly reflected. Its presence allows more time for nonlinear processes to take place. However, the nonlinear material is probed at a frequency just below the photonic bandgap.

For certain special materials, such as single nanocrystals of cadmium selenide, the degree to which this lifetime can be increased may be as much as a factor of forty at room temperature. For other materials, an enhancement of at least a factor of two is expected. Enhanced optical nonlinearities should allow much lower powers and volumes to be used in nonlinear devices.

This work was funded by the Army Research Office through MIT's Institute for Soldier Nanotechnologies.

Source: MIT

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

add to favorites email to friend print save as pdf

Related Stories

Wrinkled surfaces could have widespread applications

Aug 01, 2012

The wrinkles on a raisin result from a simple effect: As the pulp inside dries, the skin grows stiff and buckles to accommodate its shrinking size. Now, a team of researchers at MIT has discovered a way to ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

4 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0