Nanocrystals Key to Better Fuel Cells

Jul 09, 2007

A new way to make cubic zirconia with very small crystal sizes could be key to making hydrogen fuel cells more reliable and cost-effective.

The invention by a team led by Zuhair Munir, distinguished professor of chemical engineering and materials science at UC Davis, was recently included in Nanotech Briefs magazine's Nano50 awards for 2007. The awards recognize technologies, products and people most likely to impact the state of the art in nanotechnology.

Fuel cells combine hydrogen fuel and oxygen from the air to release energy, leaving only water as a waste product. Fuel cells could be an alternative power source for vehicles and other uses, but there are significant challenges to their widespread use. Current fuel cells run at temperatures of 1,500 to 1,800 degrees F (800 to 1,000 degrees C). Just reaching working temperature requires energy, and the heat quickly wears out metal, plastic and ceramic components. Prevailing fuel-cell designs also require an expensive platinum catalyst.

The new technology could allow fuel cells to run at much lower temperatures, 122 to 212 degrees F (50 to 100 degrees C).

Munir, Umberto Anselmi-Tamburini and Sangtae Kim at UC Davis invented a method to make oxides such as cubic zirconia (zirconium oxide) with extremely small grain sizes, on the order of 15 nanometers. A nanometer is one-billionth of a meter, or the size of a few atoms. At that scale, the crystals conduct electricity very well, through the movement of protons. The material could be used in fuel cells that are based on chemical oxides.

Munir was also recipient of the 2007 UC Davis Prize for Undergraduate Teaching and Scholarly Achievement. The prize includes a cash award of $35,000, thought to be the largest of its kind in the nation.

A patent application has been filed for the technology. A paper describing the technique was published in the journal Applied Physics Letters last year. The Nano50 awards will be presented during the National Nano Engineering Conference in Boston, Nov. 14 and 15, 2007.

Source: University of California - Davis

Explore further: Atom-thick CCD could capture images: Scientists develop two-dimensional, light-sensitive material

add to favorites email to friend print save as pdf

Related Stories

Fiery risk? Air shipments of batteries questioned

Dec 02, 2014

Dramatic U.S. government test results raise new concern that bulk shipments of rechargeable lithium batteries carried as cargo on passenger planes are susceptible to fires or explosions that could destroy ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

From dried cod to tissue sample preservation

Nov 19, 2014

Could human tissue samples be dried for storage, instead of being frozen? Researchers are looking at the salt cod industry for a potential tissue sample drying technology that could save money without sacrificing tissue quality.

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.