Nanocrystals Key to Better Fuel Cells

Jul 09, 2007

A new way to make cubic zirconia with very small crystal sizes could be key to making hydrogen fuel cells more reliable and cost-effective.

The invention by a team led by Zuhair Munir, distinguished professor of chemical engineering and materials science at UC Davis, was recently included in Nanotech Briefs magazine's Nano50 awards for 2007. The awards recognize technologies, products and people most likely to impact the state of the art in nanotechnology.

Fuel cells combine hydrogen fuel and oxygen from the air to release energy, leaving only water as a waste product. Fuel cells could be an alternative power source for vehicles and other uses, but there are significant challenges to their widespread use. Current fuel cells run at temperatures of 1,500 to 1,800 degrees F (800 to 1,000 degrees C). Just reaching working temperature requires energy, and the heat quickly wears out metal, plastic and ceramic components. Prevailing fuel-cell designs also require an expensive platinum catalyst.

The new technology could allow fuel cells to run at much lower temperatures, 122 to 212 degrees F (50 to 100 degrees C).

Munir, Umberto Anselmi-Tamburini and Sangtae Kim at UC Davis invented a method to make oxides such as cubic zirconia (zirconium oxide) with extremely small grain sizes, on the order of 15 nanometers. A nanometer is one-billionth of a meter, or the size of a few atoms. At that scale, the crystals conduct electricity very well, through the movement of protons. The material could be used in fuel cells that are based on chemical oxides.

Munir was also recipient of the 2007 UC Davis Prize for Undergraduate Teaching and Scholarly Achievement. The prize includes a cash award of $35,000, thought to be the largest of its kind in the nation.

A patent application has been filed for the technology. A paper describing the technique was published in the journal Applied Physics Letters last year. The Nano50 awards will be presented during the National Nano Engineering Conference in Boston, Nov. 14 and 15, 2007.

Source: University of California - Davis

Explore further: Making graphene in your kitchen

add to favorites email to friend print save as pdf

Related Stories

Diamonds are an oil's best friend

Mar 28, 2014

(Phys.org) —A mixture of diamond nanoparticles and mineral oil easily outperforms other types of fluid created for heat-transfer applications, according to new research by Rice University.

Honda smart home offers vision for zero carbon living

Mar 26, 2014

Honda and the University of California, Davis, today marked the opening of Honda Smart Home US, showcasing technologies that enable zero net energy living and transportation. The home in UC Davis West Village ...

Recommended for you

Making graphene in your kitchen

17 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

NASA's MMS observatories stacked for testing

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...