High-performance energy storage

Jul 03, 2007

North Carolina State University physicists have recently deduced a way to improve high-energy-density capacitors so that they can store up to seven times as much energy per unit volume than the common capacitor.

High performance capacitors would enable hybrid and electric cars with much greater acceleration, better and faster steering of rockets and spacecraft, better regeneration of electricity when using brakes in electric cars, and improved lasers, among many other electrical applications.

A capacitor is an energy storage device. Electrical energy is stored by a difference in charge between two metal surfaces. Unlike a battery, capacitors are designed to release their energy very quickly. They are used in electric power systems, hybrid cars, and all kinds of electronics.

The amount of energy that a capacitor can store depends on the insulating material in between the metal surfaces, called a dielectric. A polymer called PVDF has interested physicists as a possible high-performance dielectric. It exists in two forms, polarized or unpolarized. In either case, its structure is mostly frozen-in and changes only slightly when a capacitor is charged up. Mixing a second polymer called CTFE with PVDF results in a material with regions that can change their structure, enabling it to store and release unprecedented amounts of energy.

The team, led by Vivek Ranjan, concluded that a more ordered arrangement of the material inside the capacitor could further increase the energy storage of new high-performance capacitors, which already store energy four times more densely than capacitors used in industry. Their predictions of higher energy density capacitors are encouraging, but have yet to be experimentally tested.

Citation: Vivek Ranjan, L. Yu, M. Nardelli and J. Bernholc, Physical Review Letters (forthcoming article)

Source: American Physical Society

Explore further: A new multi-bit 'spin' for MRAM storage

add to favorites email to friend print save as pdf

Related Stories

Nano-supercapacitors for electric cars

Jul 01, 2014

Innovative nano-material based supercapacitors are set to bring mass market appeal a good step closer to the lukewarm public interest in Germany. This movement is currently being motivated by the advancements ...

Measuring the mass of 'massless' electrons

Jun 23, 2014

(Phys.org)—Individual electrons in graphene are massless, but when they move together, it's a different story. Graphene, a one-atom-thick carbon sheet, has taken the world of physics by storm—in part, ...

Funky ferroelectric properties probed with X-rays

Jun 10, 2014

Ferroelectric materials like barium titanate, a ceramic used in capacitors, are essential to many electronic devices. Typical ferroelectric materials develop features called domain walls with unusual properties ...

Spintronic interconnect modeling for beyond-CMOS computing

Jun 04, 2014

Georgia Institute of Technology researchers collaborating with and sponsored by Intel Corporation through the Semiconductor Research Corporation (SRC) have developed a physics-based modeling platform that advances spintronics ...

A new look at the solid-liquid interface

May 22, 2014

Interesting things happen at interfaces, and when solids meet liquids it is no exception. Understanding the complex phenomena that take place at this 'solid-liquid' interface could give us important clues about how to build ...

Recommended for you

A new multi-bit 'spin' for MRAM storage

21 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

New study refines biological evolution model

Jul 21, 2014

Models for the evolution of life are now being developed to try and clarify the long term dynamics of an evolving system of species. Specifically, a recent model proposed by Petri Kärenlampi from the University ...

User comments : 0