Astronomer Offers New Theory Into 400-year-old Lunar Mystery

Jun 27, 2007
Astronomer Offers New Theory Into 400-year-old Lunar Mystery
Image of TLP taken in 1953, courtesy of Columbia's Department of Astronomy. The TLP is the small, bright spot in the center of the image. Credit: Columbia University

Columbia astronomy professor Arlin Crotts thinks he has solved a 400-year-old mystery: the origin of strange optical flashes often reported as appearing on the moon’s surface.

Transient Lunar Phenomena (TLPs), in which the lunar surface reportedly changes in brightness, blurriness or color, have been photographed and observed by thousands of astronomers over the centuries. Yet explanations of why they occur and even their reality as true lunar phenomena have been hotly debated. The TLPs typically cover a space of a few kilometers and last for several minutes.

Crotts has uncovered a strong statistical relationship between TLPs and so-called outgassing events on the lunar surface. Outgassing occurs when gases trapped beneath a moon or planet are released and, if only briefly, become part of the object’s atmosphere. A key component of this gas is radon.

“People over the years have attributed TLPs to all sorts of effects: turbulence in Earth's atmosphere, visual physiological effects, atmospheric smearing of light like a prism, and even psychological effects like hysteria or planted suggestion” says Crotts, “but TLPs correlate strongly with radon gas leaking from the moon. No earth-bound effect can fake that.”

To arrive at his theory, Crotts correlated TLPs with known gas outbursts from the lunar surface as seen by several spacecraft, particularly NASA’s Apollo 15 mission in 1971 and the robotic Lunar Prospector in 1998. What he discovered was a remarkable similarity in the pattern of outgassing event locations recorded by spacecraft across the face of the moon and reported TLP sites.

The pattern was further strengthened after Crotts performed a statistical test to rid the sample list of false reports and one time events that might not represent true outgassing sources. “The result,” says Crotts “shows that some lunar event sites that were the focus of great observer excitement over recent decades disappeared from the more highly refined list of TLP sites.” Crotts used two catalogs of such sightings amassed and edited three decades ago by now retired astronomers Barbara Middlehurst and Winifred Cameron.

Crotts says this research might lead to optical imaging of the lunar surface that could monitor how, when and where gas escapes from the moon. While the exact composition of this gas is largely unknown, he explains, hints from previous measurements indicate that it might contain substances beneficial for future moon explorations, especially water.

Until now, Crotts says two factors have worked against researchers solving the mystery of TLPs. Historically, outgassing has often been discussed by scientists, but many have considered the moon volcanically dead despite moonquakes and episodes of gas, such as argon, observed coming from the lunar surface. Another deterrent to researchers is the daunting volume of visual data associated with TLPs – a fact that plays to Crotts’ particular research interest and skills.

Along with collaborators Professors Paul Hickson from the University of British Columbia, and Thomas Pfrommer and Cameron Hummels of Columbia, Crotts recently built the robotic camera at Cerro Tololo Inter-American Observatory in northern Chile. It will automatically scan the moon for TLPs every few seconds and produce an unbiased map of the distribution, free of potentially flawed sightings due to human error, poor equipment, or improperly recorded observations that have dominated TLP studies until now. The scientists are planning even more monitors and hope they will establish with much greater accuracy the exact locations of gas leaks on the moon.

Crotts says improved TLP maps are already pointing to intriguing features on the lunar surface, and he is currently preparing a separate article on that subject.

Source: by David Poratta, Columbia University

Explore further: Astrophysicists offer new research, tool for identifying habitable zones

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Image: Multicoloured view of supernova remnant

13 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

13 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

13 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

14 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

14 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.