Nanoparticles carry chemotherapy drug deeper into solid tumors

Jun 26, 2007

A new drug delivery method using nano-sized molecules to carry the chemotherapy drug doxorubicin to tumors improves the effectiveness of the drug in mice and increases their survival time, according to a study published online June 26 in the Journal of the National Cancer Institute.

In the past, similar drug carriers have improved targeted delivery of the drugs and reduced toxicity, but they sometimes decreased the drugs’ ability to kill the tumor cells. Using a new drug carrier, Ning Tang of the Chinese Academy of Sciences in Beijing and colleagues compared tumor growth and survival in mice that were given doxorubicin in the nanocarriers or on its own.

Doxorubicin delivered by nanocarriers was more effective in preventing tumor growth than free doxorubicin, and the mice receiving this treatment method lived longer and had fewer toxic side effects.

“Encapsulation of doxorubicin…increased its accumulation and penetration in tumors in terms of both the percentage of cells that were reached by the drug and the intracellular levels that were attained,” the authors write.

In an accompanying editorial, Matthew Dreher, Ph.D., of the National Institutes of Health in Bethesda, Md., and Ashutosh Chilkoti, Ph.D., of Duke University in Durham, N.C., discuss the future of drug delivery, which they think should focus on three important research areas—drug combinations, targeting, and integration.

“The study by Tang [and colleagues] is a simple but effective demonstration of the benefits of integration of a drug with an appropriate carrier to yield a striking gain in efficacy,” the authors write. “May the days of pharmacological missiles that miss their target and friendly fire that kills patients soon be over!”

Source: Journal of the National Cancer Institute

Explore further: Molecular beacons shine light on how cells 'crawl'

add to favorites email to friend print save as pdf

Related Stories

Tuning light to kill deep cancer tumors

Oct 15, 2014

An international group of scientists led by Gang Han, PhD, at the University of Massachusetts Medical School, has combined a new type of nanoparticle with an FDA-approved photodynamic therapy to effectively kill deep-set ...

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Recommended for you

Molecular beacons shine light on how cells 'crawl'

18 hours ago

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0