Nanoparticles carry chemotherapy drug deeper into solid tumors

Jun 26, 2007

A new drug delivery method using nano-sized molecules to carry the chemotherapy drug doxorubicin to tumors improves the effectiveness of the drug in mice and increases their survival time, according to a study published online June 26 in the Journal of the National Cancer Institute.

In the past, similar drug carriers have improved targeted delivery of the drugs and reduced toxicity, but they sometimes decreased the drugs’ ability to kill the tumor cells. Using a new drug carrier, Ning Tang of the Chinese Academy of Sciences in Beijing and colleagues compared tumor growth and survival in mice that were given doxorubicin in the nanocarriers or on its own.

Doxorubicin delivered by nanocarriers was more effective in preventing tumor growth than free doxorubicin, and the mice receiving this treatment method lived longer and had fewer toxic side effects.

“Encapsulation of doxorubicin…increased its accumulation and penetration in tumors in terms of both the percentage of cells that were reached by the drug and the intracellular levels that were attained,” the authors write.

In an accompanying editorial, Matthew Dreher, Ph.D., of the National Institutes of Health in Bethesda, Md., and Ashutosh Chilkoti, Ph.D., of Duke University in Durham, N.C., discuss the future of drug delivery, which they think should focus on three important research areas—drug combinations, targeting, and integration.

“The study by Tang [and colleagues] is a simple but effective demonstration of the benefits of integration of a drug with an appropriate carrier to yield a striking gain in efficacy,” the authors write. “May the days of pharmacological missiles that miss their target and friendly fire that kills patients soon be over!”

Source: Journal of the National Cancer Institute

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Engineering light-controlled proteins

Jul 03, 2014

(Phys.org) —A University of Wyoming professor has engineered proteins that can be activated by near-infrared light as a way to control biological activities in deep tissues of small mammals.

Recommended for you

For electronics beyond silicon, a new contender emerges

12 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

14 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

14 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0