Carbon nanotube injectors probe living cells without damage

Jun 20, 2007 By Lisa Zyga feature
Carbon nanotube injectors probe living cells without damage
Left: The CNT nanoinjector tip, conjugated with streptavidin-coated quantum dots (inset: larger view of the needle). Right: Quantum dots are shown in red after being injected into a living human HeLa cell (the dark shape is the AFM cantilever). Image credit: Xing Chen, et al. ©PNAS 2007.

In order to investigate the processes that go on inside a single human cell—or even specific subcellular compartments—researchers need a device that is small and controlled enough to pass through the delicate cell membrane. Carbon nanotubes (CNTs), with their needle-like geometry, high elasticity and strength, have recently shown that they’re up to the task.

Scientists Xing Chen, Andrax Kis, Alex Zettl, and Carolyn Bertozzi from the University of California at Berkeley and the Lawrence Berkeley National Laboratory have recently found that a CNT-based “nanoinjector” is also the first to penetrate a cell with no membrane damage, even after hour-long, repeated use. Previous bulkier methods consistently damaged the membrane after just a few seconds of penetration.

“This is the first cell injector with temporal and spatial control on the nanometer scale that can deliver a discrete number of molecules and doesn't damage the cell membrane,” Chen told PhysOrg.com. “The less perturbation [to a cell], the better for the systems studied. In the case of cellular delivery/injection, if too much damage is made to the cell, the cell dies.”

The scientists predict that this advantage of the nanoinjector will play a central role in experimental cell biology with its ability to overcome the plasma membrane barrier. The nanoinjector also offers the opportunity for injecting cargo such as DNA, RNA, polymers, bacteria and other particles.

The key to the CNT’s success is simply its small size. With a diameter of 1 nanometer, about the same as a single protein, a CNT needle pierces a hole so small that it is quickly healed by lipid diffusion (the passive movement of particles to reach a state of equilibrium).

The setup consists of a multiwalled CNT attached to an atomic force microscope (AFM) tip. The AFM controls the needle’s displacement with nanometer resolution, as well as applies and monitors forces on the cell membrane.

In the scientists’ experiment, the CNT’s cargo consisted of quantum dots, which are fluorescent nanoparticles that provide high visibility to enable single particle tracking inside a cell. For loading and releasing this cargo, the scientists used a disulfide-based compound. In the oxidizing environment outside the cell, the disulfide is stable and links to the quantum dots; in the reducing environment inside the cell, the disulfide bonds are cleaved, releasing the quantum dots.

The scientists demonstrated this nanoinjection in cultured HeLa cells, which are human cervical epithelial cancer cells. After about 15-30 minutes of the nanoneedle positioned inside a targeted cell, the scientists observed 50-100 nanometer clusters of quantum dots using a fluorescence microscope.

Using single particle tracking, the scientists could also directly characterize the motions of the quantum dots inside the cell, which agreed with previous measurements. The long duration and repeated injection in living cells will hopefully make this biocompatible nanoinjector useful for scientists’ future investigations and delivery into single cells.

“Gene delivery is definitely one of the potential applications,” Chen said. “In addition, this new technique opens the door for studying a variety of intracellular processes.”

Citation: Chen, Xing, Kis, Andras, Zettl, A., and Bertozzi, Carolyn R. “A cell nanoinjector based on carbon nanotubes.” Proceedings of the National Academy of Sciences. 8218-8222, May 15, 2007, vol. 104, no. 20.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Nanoparticles release drugs to reduce tooth decay

Related Stories

Light as puppeteer

Mar 18, 2015

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have demonstrated a more robust method for controlling single, micron-sized particles with light.

Protecting crops from radiation-contaminated soil

Mar 05, 2015

Almost four years after the accident at the Fukushima Daiichi Nuclear Power Plant in Japan, farmland remains contaminated with higher-than-natural levels of radiocesium in some regions of Japan, with cesium-134 ...

A molecular compass for bird navigation

Feb 27, 2015

Each year, the Arctic Tern travels over 40,000 miles, migrating nearly from pole to pole and back again. Other birds make similar (though shorter) journeys in search of warmer climes. How do these birds manage ...

Recommended for you

Nanoparticles release drugs to reduce tooth decay

6 hours ago

Therapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way ...

Combining magnetism and light to fight cancer

11 hours ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.