Double-Duty Nanoparticles Overcome Drug Resistance in Tumors

Jun 14, 2007

Cancer cells, like bacteria, can develop resistance to drug therapy. In fact, research suggests strongly that multidrug resistant cancer cells that remain alive after chemotherapy are responsible for the reappearance of tumors and the poor prognosis for patients whose cancer recurs. Indeed, multidrug resistance occurs in over 50% of patients whose ovarian cancer relapses, accounting in large part for the high mortality associated with ovarian cancer.

In an attempt to circumvent the mechanisms that cancer cells use to avoid cell death following chemotherapy, researchers at Northeastern University, led by Mansoor Amiji, Ph.D., have created a polymeric nanoparticle that delivers a one-two punch to multidrug resistant ovarian cancer cells.

The first blow comes from the drug ceramide, which overwhelms an enzyme that drug-resistant tumor cells use to avoid apoptosis, the programmed cell death that chemotherapy triggers.

The nanoparticle delivers its second blow in the form of paclitaxel, a potent anticancer agent used as a first-line therapy for ovarian cancer. Amiji, the principal investigator of one of the National Cancer Institute's Cancer Nanotechnology Platform Partnerships, and his colleagues published their results in the journal Cancer Research.

Using drug-resistant ovarian cancer cells growing in culture, the investigators showed that treatment with the multifunctional nanoparticle produced 100% mortality among the cultured cells. Moreover, ceramide co-therapy sensitized the drug-resistant cells to such a degree that they became as sensitive to the cell-killing effects of paclitaxel as are non-drug-resistant ovarian tumor cells. The researchers note that followup experiments showed that nanoparticle-delivered ceramide, in fact, did restore the drug-resistant cells' ability to undergo apoptosis.

This work, which was supported by the National Cancer Institute's Alliance for Nanotechnology in Cancer, is detailed in the paper "Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer." Investigators from the Massachusetts General Hospital also participated in this study. An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Interaction of carbon nanotubes and the blood-brain barrier

Related Stories

Yahoo unveils new online video series

39 minutes ago

US Internet giant Yahoo said it was expanding its online offerings, unveiling 18 new video series with which it hopes to attract a larger audience and advertisers.

Groups want review of Shell's Arctic regulatory filings

59 minutes ago

Two groups petitioned the U.S. Securities and Exchange Commission on Monday for an investigation of Royal Dutch Shell PLC and what the groups call misstatements in regulatory filings regarding the risk of a catastrophic oil ...

Apple's Mac is selling strong, iPad not so much

1 hour ago

Apple's iPhone was again the company's star in the first three months of the year. The tech giant sold 61 million iPhones, or 40 percent more than in the same period a year ago. That represented about two-thirds ...

Claims about the decline of the West are 'exaggerated'

8 hours ago

A new paper by Oxford researchers argues that some countries in Western Europe, and the USA, Canada, Australia and New Zealand now have birth rates that are now relatively close to replacement, that the underlying trend in ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.